高温超電導ケーブルにおける液体窒素循環冷却システムについて

Liquid nitrogen circulating cooling system for HTS superconducting cable

<u>渡部 充彦</u>(住友電工) <u>Michihiko Watanabe</u> (Sumitomo Electric Industries, Ltd.)

1. はじめに

高温超電導技術を用いたアプリケーションのひとつに、 送配電用ケーブルシステムがある。今回はシステムの超電 導状態を維持するための冷却システムについての概容、構 成、要求される仕様、課題などについてとりまとめた。

2. 超電導ケーブル用冷却システムの概要

超電導ケーブルはその性質上、超電導を維持すべき導体 部が長手方向に長距離に及ぶことから、ケーブル全長に冷 媒を充填し冷却する方法が一般に採用される。単純に冷媒 を浸漬した場合には、断熱層や電流リードなど外部からの 侵入熱、送配電による電気的な熱損失などにより冷媒温度 の上昇、蒸発により超電導状態を維持できなくなるため、 冷媒を常に補給する浸漬冷却、もしくは冷媒をケーブル内 に循環させ、その後再冷却しケーブルシステムに戻すとい う循環冷却に大別される。さらに循環冷却は、冷凍機やサ ブクーラで生成した低温部と循環冷却は、冷凍機やサ ブクーラで生成した低温部と循環冷却は、冷凍機やサ する直接冷却方式と、予めタンクなどで液体窒素を冷却し ておき、これを循環させる間接冷却方式とに分けられる。 これらを整理すると Fig.1 となる。今回は現在主に採用さ れている直接冷却方式について述べる。

Fig.1 Classification of HTS cable cooling system

3. 液体窒素循環冷却システムの基本構成

DI-BSCCO[®]などのビスマス2223系線材が超電導状態 となる臨界温度 Tc は約 110K、イットリウム系超電導体 のTc は約 90K であり、これら高温超電導線材を用いてケ ーブルシステムを設計する場合、冷媒は比較的安価で入手 の容易な液体窒素が用いられる。大気圧下での液体窒素の 凝固点は約 63K、沸点は約 77K であるから、液体として 存在できる温度範囲で運転することとなる。冷媒を加圧す ることにより沸点を上昇させ、温度範囲を広く取ることも 出来るが、いずれにせよ循環系で冷媒が蒸発しないよう液 体窒素の温度、圧力、流量などを設定、制御してケーブル システムに供給できるように循環冷却システムの設計を おこなう必要がある。

Fig.2 に東京電力・旭変電所にて 2012 年に実施された 超電導ケーブル実系統送電試験で用いられた、直接冷却方 式による液体窒素循環冷却システムの基本構成を例とし て示す。冷却システムの主な構成要素は、液体窒素を貯液 し圧力の調整を行うリザーバタンク、液体窒素循環を行う ポンプ、液体窒素を冷却するための冷凍機、およびそれら を接続する断熱配管や流量調整用バルブなどで構成され る。Fig.2 ではケーブル側の最大熱負荷は 3700W として 設計され、冷却システム自身の熱負荷も考慮してスターリ ング方式の 1kW 級冷凍機の5 台設計とし、さらに冷凍機 の故障、メンテナンスに備えた冗長機1台を追加した計6 台で構成されている。

Fig.2 LN2 cooling system for $66 \rm kV\textsc{-}200 \rm MVA$ HTS cable system in 2012

4. 冷却システムに要求される仕様

Table 1 に、Fig.2 の超電導ケーブルシステムに要求される循環冷却システムの主な要求事項を例としてまとめる。冷凍機冷却の場合、初期冷却以外では液体窒素の補給は不要になるが、冷凍機の長期間での高信頼性が重要になる。液体窒素の運転温度は67-77Kとし、さらに加圧を行うことでサブクール度を向上させ、冷媒の蒸発を抑制した。また冷却システムの信頼性を向上させるため、主要構成要素である冷凍機、循環ポンプに冗長性をもたせるとともに、万一故障の際には自動で運転を切替るようにした。また無人運転を想定し、液体窒素の状態を自動制御とした上で運転状態を常時モニタし、異常の際には警報を発生させ、冷却システムの自動停止などを行えるようにした。

Table 1. Requirement for the LN2 circulating cooling system for HTS superconducting cable system

Items	Requirements or goal	Spec or countermeasure
Туре	No LN2 consumption	Closed loop LIN circulate and refrigerate composed of Refrigerator, LN2 pump, reservoir, valve and piping
LN2 condition	No vaporization for HV dielectric	Keep Sub-cooled LN2 • Temperature : 67 to 77 K • Pressure : 0.2 to 0.5 MPaG • Circulate flow rate : 40 L/min
Reliability	Operate without system shutdown	Select 'time-proven' apparatuses 1 kW – class Stirling cooler & Centrifugal LN2 pump Apparatus redundancy & automatic switching in case of their maintenance or repair
Control / operation	Unmanned operation	Temperature, pressure and flow rate control Establish observe / alarm system

上記のように設計、開発した冷却システムを用い、超電 導ケーブルシステムの1年間の実系統試験を実施した[1]。

5. まとめ

高温超電導ケーブルにおける液体窒素循環冷却システムの基本構成、仕様などについてまとめた。

謝辞

本研究の一部は国立研究開発法人新エネルギー・産業技 術機構の助成により実施したものである。

参考文献

 Maruyama et.al. 'Results of Japan's first in grid operation of 200 MVA Superconducting Cable System', IEEE Trans.on Applied Superconductivity, Vol 25, Issue 3, Jun., 2015.

超電導ケーブル向けターボブレイトン冷凍機および冷却システムの開発 Development of Turbo-Brayton refrigerator for HTS Cable

<u>仲村 直子</u>(前川製作所) <u>NAKAMURA Naoko</u> (MAYEKAWA MFG. CO., LTD.) E-mail: naoko-nakamura@mayekawa.co.jp

1. はじめに

NEDO「高温超電導ケーブル実証プロジェクト」から始まり、 10年近く実施されたプロジェクトが2019年2月末に終了した。 前川製作所は、一連のプロジェクトの中で、高温超電導ケー ブル向けの冷却システムやターボブレイトン冷凍機の開発に 携わり、多くの結果と経験を得ることが出来た。さらに、本プロ ジェクトの成果を事業に繋げるため、商品機「Brayton NeO」を 自社費用で開発し、2018年6月にプレスリリースを行い、販売 を開始した。

上記の技術開発と並行して、JICA「ブラジルにおける超電 導送電等高効率送電技術導入検討のための情報収集・確認 調査」や NEDO「実証前調査/実系統への超電導ケーブルシ ステム導入実証事業(スペイン)」で、高温超電導ケーブルの 海外での普及に向けた調査活動にも携わった。特に、調査活 動の中で、各現場や環境に合わせた冷却システムの検討を 行ったが、実運用を考えた場合、冷却システムの運用面での 課題が残されていることを感じてきた。

本発表では、国内で実施してきた高温超電導ケーブル向 け冷却システムやターボブレイトン冷凍機の開発の振り返りと、 調査活動で得られた冷却システムの課題のエッセンスを紹介 する。

2. 実証試験用ターボブレイトン冷凍機

NEDO「高温超電導ケーブル実証プロジェクト」で開発した ターボブレイトン冷凍機を写真 1 に示す。ターボ式のブレイト ンサイクルを用いた冷凍機は、空気冷凍システム「PascalAir」 として、前川製作所ではすでに商品化していたが、より高速回 転の回転機であること、冷媒にネオンガスを用いること等の異 なる点も多く、慎重に設計検討を重ねた。特に、COP:0.1を目 指すため、断熱効率 0.8、圧力比 1.4 のターボ圧縮機・膨張 機の設計・製作が開発当初の主課題であったが、設定された 開発期間が短く、各部品の納期も時間を必要とするため、作 り直しが許されない状況での開発であった¹。

開発したターボブレイトン冷凍機は、工場試験の結果、当 初の開発目標を概ね達成したため、東京電力旭変電所の冷 却システムに組み込まれた。2017年3月31日から2018年4 月2日まで実系統に繋げた連続運転を実施し、運転実績を 積んだ²。

Photo.1 Turbo-Brayton refrigerator for test

3. 商品機「Brayton NeO」

写真1は、開発したターボブレイトン冷凍機を東京電力旭 変電所の冷却建屋内に設置した際の写真であるが、本冷凍 機は、熱交換器や配管等での圧力損失を減らすためにサイ ズを犠牲にしたため冷凍機全体が大きくなった。旭変電所の 冷却建屋に搬入する際にも、冷凍機を大きく3つの部品に分 けて搬入し、建屋内での組み立て作業が発生したため、据付 作業に手間と時間が必要であった。

海外への輸送を考えた場合、出荷から現地据付までの工 程における手間や時間は極力減らしたい。さらに、現地エン ジニアの技能が未知のため可能な限り現地作業を省きたい。 そこで、海外での利用も見据えた商品開発が必要であった。 開発した商品機「Brayton NeO」を写真2に示す。本冷凍機の 特徴の一つは、洋上コンテナに入るサイズまでコンパクト化し た点である。写真2は屋内使用であるが、エンクロージャーを 用いることで屋外でも使用することが出来る。

海外規格への対応も検討を重ねている。前川製作所は、 2018年12月の時点で、日本国内を除き45カ国、104箇所、 7生産拠点を有しており、海外の社内エンジニアのサポートの 下、関連する海外規格での設計検討を進めている。

Photo.2 Brayton NeO

4. おわりに

NEDO「高温超電導ケーブル実証プロジェクト」でターボブ レイトン冷凍機を開発し、約1年に亘る実系統での連続運転 に成功した。さらに、洋上コンテナサイズを目標に設計された 商品機「Brayton NeO」のプレスリリースを2018年6月に行った。 冷凍機開発は継続実施しているが、高温超電導ケーブルの 実用化を考えた場合、冷凍機、冷却システム、超電導ケーブ ルをそれぞれ個別に見るのではなく、総合・相互的にシステム 全体を見据えたオプティマイズが必要だと考えている。

参考文献

- Naoko Nakamura, Shunsuke Komatsu, Shota Ueda, Masao Komeda, Mizuo Kudo, Akito Machida, Cryogenic engineering, Vol.48, No.7, pp382–386, (2013)
- Masahiro Shimoda, Masayuki Hoshino, Hiroharu Yaguchi, Tomoo Mimura, Takato Masuda, 2019 Annual Meeting Record I. E. E. Japan, pp326-327, (2019)

— 83 —

液体窒素循環による 10kW ターボブレイトン冷凍機性能試験

Performance Test of 10kW Turbo-Brayton Refrigerator with LN2 circulation

平井 寬一, 尾﨑 信介, 石井 政輝, 青沼 快(大陽日酸) HIRAI Hirokazu, OZAKI Shinsuke, ISHII Masaki, AONUMA Kai (TNSC) E-mail: hirokazu.hirai@tn-sanso.co.jp

1. はじめに

超電導ケーブルなどの超電導電力機器では、機器の温度 を一定状態に保つため液体窒素循環による冷却が必須であ る。機器の発熱や侵入熱を除去した液体窒素は、冷凍機へと 戻り,所定の温度に冷却され機器へと循環される。このような 循環冷却では、冷凍機単体の性能だけでなく、液体窒素循 環時の冷却特性の把握も大変重要である。

今回は, 大陽日酸で商品化した 10kW ターボブレイトン冷 凍機(NeoKelvin®-Turbo 10kW)および液体窒素循環設備 を使用した性能評価試験を実施したので、その概要と結果に ついて報告する。

2. 10kW ターボブレイトン冷凍機

Fig.1に10kWターボブレイトン冷凍機の外観を示す。今回 の性能試験は,韓国電力と LS ケーブルとが進めている世界 初の商用超電導ケーブル向けとして製作された冷凍機を用 いた。本冷凍機は、冷媒であるネオンを圧縮、膨張させるター ビンコンプレッサを2台搭載し, 圧縮機側は直列配置(2段圧 縮),膨張側は並列配置(1 膨張)のサイクルとなっている。本 体には主熱交換器とサブクール熱交換器とを内蔵しており、 サブクール熱交換器によりネオン冷媒と液体窒素との熱交換 を行う。液体窒素出口温度のフィードバック制御によりタービ ンコンプレッサの回転数を調整し,液体窒素出口温度を保つ よう自動運転される。

3. 液体窒素循環設備

Fig.2に液体窒素循環設備(循環設備)の外観を示す。本 設備は,液体窒素の循環および冷凍機性能評価に必要とな る循環ポンプ, 圧力調整タンク, 流量計, 熱負荷ヒーターを備 えている。また、循環ポンプのバイパス回路も設けており、ポ ンプ単体の性能評価試験も実施できる構成となっている。さら に、本設備と冷凍機とを接続する接続ポートの他に、外部熱 負荷との接続ポートを備えており, 試験用超電導機器などを 接続した冷却試験も可能となっている。

4. 冷却試験方法

冷凍機の性能評価では,液体窒素循環により熱負荷を与 える方法で冷凍能力, COP の確認を行った[1]。液体窒素は 循環設備内の熱負荷ヒーターにより加温され冷凍機へと送ら れ、 冷凍機で所定の温度まで冷却され循環設備へと戻される。 この時の冷凍機出入口における液体窒素のエンタルピ差お よび液体窒素の質量流量との計算により冷凍能力を算出した。 冷却温度は液体窒素出口温度としている。また,実用の超電 導機器では急激な負荷変動への制御安定性も重要でありロ ードサイクル試験として、無負荷から全負荷(約12kW)への変 動,全負荷での8時間保持,全負荷から無負荷への変動,無 負荷 16 時間保持を 20 サイクル行った。

5. 試験結果

Fig. 3 に冷凍能力および COP の試験結果を示す。冷凍 能力と COP については,液体窒素出口温度 66K, 69K, 72K, 77K の 4 点の温度でデータを採取した。いずれの試験でもタ ービンコンプレッサの回転数が最高回転数になるよう熱負荷 を調整し、全負荷での性能を示している。本試験により商品 仕様である 70K では,冷凍能力約 11.5kW, COP 約 0.068 が

得られることが確認できた。また,ロードサイクル試験を冷却 温度 69K にて実施し、20 サイクルを安定的に運転できること を確認した。

6. まとめ

液体窒素循環設備を用いて10kWターボブレイトン冷凍機 の性能評価試験を実施した。窒素循環の条件において冷却 温度 70K で冷凍能力約 11.5kW, COP 約 0.068 が得られるこ とが確認できた。また、20回のロードサイクル試験により冷凍 機制御の安定性を実証した。

Fig.1 10kW turbo-Brayton refrigerator

Fig.2 Liquid Nitrogen circulation system

^{1.} S. Ozaki, et al.: Proceedings of the 27th ICEC, to be published

小型冷凍機(GM 冷凍機)を利用した コールドヘリウムガス循環による超電導機器の冷却システム

Remote cooling system for superconducting equipment by cold helium gas circulation using GMrefrigerator

> <u>山中 良浩</u>, 伊藤 琢司, 梅野 高裕 (大陽日酸) <u>YAMANAKA Yoshihiro</u>, ITO Takuji, UMENO Takahiro (TNSC) E-mail: Yoshihiro.yamanaka@tn-sanso.co.jp

1. はじめに

超電導機器の冷却には液体ヘリウム等の寒剤が必要であ る。最近ではヘリウムの供給リスクと価格の高騰もあり、液体ヘ リウムを使用しない若しくは消費量を節約できる無冷媒型の 冷却システムのニーズが高くなっている。当社ではこれらのニ ーズに対応した冷却システムの設計・製造、販売を行ってい る。小型冷凍機を利用した無冷媒冷却システムとして、GM 冷 凍機で冷却したコールドヘリウムガスを断熱配管により遠隔部 に移送し被冷却物を冷却する循環冷却システム(リモートクー リングシステム)がある。このシステムの利点として、GM 冷凍 機の機械的な振動を排除できること、4.2K~数百 K の広い範 囲で使用できること、被冷却物のサイズが大きい場合や熱伝 導率の悪い材料の場合などではコールドヘリウムガスを吹き 付けることで比較的均一に冷却が出来ることもが

この技術を利用した当社製品として、分離型希釈冷凍機、 NMRプローブ冷却装置、超電導機器の予冷装置等がある。

本講演では上記製品に利用されているリモートクーリングシ ステムに関する技術的な説明と、製品の特徴、冷却性能等を 紹介する。

2. リモートクーリングシステム

図1は2段GM冷凍機を使用した基本的な**リモートクーリン** グシステムの概念図である。被冷却物は熱交換器(HEx5)の 位置に設置される。HEx5に接触させて冷却する場合や、HE x5そのものを被冷却物とすることも出来る。この場合はコール ドヘリウムを被冷却物に吹き付けて冷却することになる。

システム設計当たっては、必要とする冷凍能力、被冷却物 の特徴からヘリウムガスの循環量と圧力範囲を決め、必要な 冷凍機、循環に必要なコンプレッサーを選定する。温度、循 環量から求められるガスのエンタルピーに矛盾が無い様に熱 交換機を設計する。

被冷却物(HEx5)が同じ容器内に設置される場合の施工 は簡単であるが、離れた位置にある場合はコールドへリウムガ スを移送する必要がある。通常は真空断熱配管により移送す るが侵入熱により距離が離れるほど温度が高くなってしまう。 これを避けるために配管を4重管として、戻りのガスを外管に 流すことで低温の輻射シールドとして利用し熱侵入を抑える 構造とすることもある。

GM 冷凍機は必要とする温度と冷凍能力により複数台を使用する場合や、単段の冷凍機を用いる場合がある。

Fig.1 Schematic drawing of remote cooling system using 2stage GM-refrigerator

3. 製品事例紹介

3-1 無冷媒分離型希釈冷凍機

本製品は当社製品で最も低温が得られる装置である。リモートクーリングの技術を希釈冷凍機の予冷ステージに使用している。本装置は 0.1K 以下の温度を得られ、超伝導転移端 センサー(TES)の冷却用に開発を行った。TESは非常に高感 度で次世代検出器として注目されているが振動に弱く GM 冷 凍機の振動で動作に影響がでる場合があった。そこで振動を 排除するためリモートクーリングの技術を利用し GM 冷凍機を 希釈冷凍機本体から切り離すことにより TES に影響を与えな い低振動を実現した。図2にフロー図を示す。

3-2 その他冷却システム

その他にも2段のGM冷凍機を利用した冷却システムでは 冷凍能力約10W@15K、温度範囲5K台~470Kの広い温 度域に対応できる装置の製作も行っている。GM冷凍機から の直接冷却では冷凍機の仕様により高温側の温度が制限されるが循環冷却を行うことで高温側にも対応可能である。

3-3 単段 GM 冷凍機を利用した冷却装置

はじめに述べたように、最近ではヘリウムの価格が高騰す るとともに、供給タイトな状態が続いており、超電導マグネット を立ち上げる液体ヘリウムが確保できないなどの状況も発生 しているようである。液体窒素での予冷によりヘリウムの使用 量を節約できるが、窒素予冷が好ましくない装置もある。そこ で冷凍機で冷却したヘリウムガスを循環させて予冷を行うこと が出来る装置を製作している。能力の大きいものでは GM 冷 凍機 2 台を使用し 60K で 250W 程度の冷凍能力を持つ。デ ュワー内に設置されたコイル冷却のため循環圧力を低くする 必要があるため熱交換器に工夫が必要である。

現在 GM 冷凍機1 台を使用した小型のシステムも設計中である。

Fig.2 Schematic drawing of Split-type dilution refrigerator

(RE)BCO 薄膜の H // c 付近で磁界角度に依存しない J。特性 (1) —高濃度ナノ粒子ピンの場合

Field-angle independent J_c properties near H // c in (RE)BCO thin films (1) —in the case of high-density of nanoparticle pins

山崎 裕文(産総研)

YAMASAKI Hirofumi (AIST), E-mail: h.yamasaki@aist.go.jp

1. はじめに

筆者らは、YBCO 薄膜中の比較的大きなナノ析出物が、臨 界電流密度の磁界角度依存性 $J_c(\theta)$ のデータで、H // cを中 心としたブロードなピークをもたらすことを見出している [1]。 最近、より高濃度のナノ粒子を含む (RE)BCO 薄膜において、 H // c付近でフラットな $J_c(\theta)$ が観測されており、その起因を 考察した。高濃度ナノ粒子ピンを含む薄膜では (RE)BCO の異方性に起因する磁束線の曲りが生じることが、フラットな $J_c(\theta)$ の原因であることを解明した。

2. 比較的大きなナノ析出物を含む(RE)BCO 薄膜の J_c(θ)

TEM 観察でナノ析出物が観測された 4 つの (RE)BCO 薄膜 (PLD 薄膜A, C、TFA-MOD 薄膜 B, D)について、それらの諸元と、ナノ析出物の実体、典型的なサイズ、濃度とその形状を表1に、また、77 K, 1 T における $J_c(\theta)$ を図1に示す [1-4]。薄膜A, B では c 軸中心のブロードピークが観測されたが、他の薄膜ではフラットな $J_c(\theta)$ が観測された。

3. 理論的な考察

c軸中心のブロード $J_{c}(\theta)$ ピークは、要素的ピン力密度 f_{p} の 磁界角度依存性で説明できる [1]。直径 a が量子化磁束の コア径 2ξ (ξ :コヒーレンス長)より大きな球状ピンの場合、常 電導コアがナノ粒子に含まれると ($\mu o/2$) $H_{c}^{2}\pi\xi_{ab}\xi(\theta)a$ だけ系 のエネルギーが低下する(H_{c} :熱力学的臨界磁界)。このエネ ルギーを、ローレンツ力で磁束がピンから外れるときの特性距 離 r_{c} で除することによって f_{p} が得られる。球の場合は $r_{c} = a/2$ であって、 $f_{p} = (\mu o/2)H_{c}^{2}\pi\xi_{ab}\xi(\theta)a/(a/2) = \mu oH_{c}^{2}\pi\xi_{ab}\xi(\theta)$ (1) と なる。ナノ析出物のような強いピンの場合、 f_{p} の線形和モデル が成立して $J_{c} \propto f_{p}$ となるため、コヒーレンス長の異方性 $\xi(\theta)$ が c 軸中心ブロードピークをもたらす(図1)。

薄膜 C のような c 軸に平行な円柱ピン(直径 > 2 ζ_{ab} 、高さ h)の場合、H// c では r_c = 2 ζ_{ab} で f_p = ($\mu_0/2$) $H_c^2 \pi \zeta_{ab}^2 h/2 \zeta_{ab}$ = ($\mu_0/4$) $H_c^2 \pi \zeta_{ab}h$ (2) となる [5]。H // c から傾いた時、磁束線 が直線なら r_c が h に比例し、f_p \propto ($\mu_0/2$) $H_c^2 \pi \zeta_{ab} \zeta(\theta) h/h$ = ($\mu_0/2$) $H_c^2 \pi \zeta_{ab} \zeta(\theta) \propto \zeta(\theta)$ となる。しかし、異方性に起因する磁 束線の曲がり(図2a)が生じるため H // c からある程度の角度 まで (2) 式が成立し、フラットな J_c(θ) となる。さらに、低濃度 の場合(図2b)と比較して、ナノ粒子濃度が高いほど磁束線 単位長さ当りにかかるローレンツ力が大きくなり、図2aのような 磁束線の曲がりが生じやすい。その場合、回転楕円体型のナ ノ析出物を含む薄膜 D でも、薄膜 C 同様に r_c = 2 ζ_{ab} となる ことが想定され、c 軸近傍の J_c(θ)がフラットとなる。

参考文献

 H. Yamasaki, K. Ohki, H. Yamada, Y. Nakagawa and Y. Mawatari: Supercond. Sci. Tech., Vol. 21 (2008) p. 125011

- 2. K. Nakaoka et al.: Physica C, Vol. 463-465 (2007) p. 519
- 3. A. Xu et al: Appl. Phys. Lett., Vol. 106 (2015) 052603.
- 4. K. Nakaoka et al.: Supercond. Sci. Tech., Vol. 30 (2017) p. 055008
- 5. H. Yamasaki, H. Yamada: Physica C, Vol. 542 (2017) p. 46

Fig. 1 $J_{c}(\theta)$ curves in various (RE)BCO thin films containing relatively large nanoprecipitates.

Fig. 2 Schematics showing the interaction between a flux line and spheroidal nanoparticle pins whose size is larger than $2\xi_{ab}$. (a) Strongly deformed flux line when the pin density is high and a typical distance L_1 between adjacent pins is short. (b) almost straight flux line when the pin density is low and L_2 is long.

表1 比較的大きなナノ析出物を含む (RE)BCO 薄膜の諸元と析出物の実体・サイズ・形状等

	成膜法	膜厚 (nm)	$T_{c}\left(\mathrm{K} ight)$	析出物の実体	サイズ (nm)	濃度 (10 ²¹ m ⁻³)	形状など	文献
А	PLD	250	90.9	—	7.1-10.1	>5.3	回転楕円体	1, 5
В	MOD	1,400		CuO, Y2Cu2O5	10-30	~0.38	回転楕円体	2
С	PLD	200	~90	Y ₂ O ₃	5-10 (幅)	>17	円柱(高さ ~3 nm)	3
D	MOD	~600		BZrO, Y2Cu2O5	13±4	~6.8	回転楕円体	4

(RE)BCO 薄膜の H// c 付近で磁界角度に依存しない J_c 特性 (2) —c軸相関ナノロッドピンで低温度の場合 Field-angle independent J_c properties near H // c in (RE)BCO thin films (2) —in the case of c-axis-correlated nanorod pins at low temperatures

山崎 裕文(産総研)

YAMASAKI Hirofumi (AIST), E-mail: h.yamasaki@aist.go.jp

1. はじめに

(RE)BCO 薄膜に導入したナノロッドは c 軸相関ピンであり、 臨界電流密度の磁界角度依存性 $J_c(\theta)$ において、77 K 等の 高温度において大きな c 軸方向の $J_c(\theta)$ ピークを示す。しか し、30 K 以下の低温度ではそのような $J_c(\theta)$ ピークが目立た なくなり、4.2 K では消失する [1]。従来、この現象は、低温度 においてのみ有効な点欠陥によるピンニングに帰されていた。 しかし、最近観測された、77 K, 3 T (//c) での J_c と30 K, 3 T での J_c との良い相関 [2] は、この解釈と矛盾する。イントリ ンシック・ピンニング [3] に基づく新しい解釈を提案する。

2. 実験結果と理論的な考察

Xuらは、7.5 at.% BaZrO₃ (BZO)入り Y_{0.6}Gd_{0.4}Ba₂Cu_{2.3}O_x 薄膜(T_c = 90.7 K、マッチング磁界 B_{ϕ} ≈ 2.6 T)の幅広い温度・ 磁界範囲における J_c 特性を測定した [1]。50 K 以上で顕著 なc軸方向の $J_c(\theta)$ ピークが観測されたが、30 K 以下で消失 した。4.2 K における $J_c(H, \theta)$ 曲線を、図1の実線 (solid symbol) で示す。彼らは、BZO ナノロッド導入によって生じた 歪みが高濃度の点欠陥をもたらし、その弱いピンが低温度で 有効になってc軸中心 $J_c(\theta)$ ピークが消失したと推論している [1]。ナノロッドによる格子ひずみが (RE)BCO マトリクスの酸 素欠損と T_c 低下をもたらすことは知られているが [4]、それ が点欠陥ピンになることの証拠は得られていない。

30 K 以下の低温度では、(RE)BCO の層状構造に起因 するイントリンシック・ピンニング [3] が強く働くため、図1に示 すように、H // ab 近傍で鋭い $J_c(\theta)$ ピークが観測される [1,2]。 そして、4.2 K など十分な低温度では、傾いた磁束線は階段 状に侵入し、磁束ピン止め現象を ab 平面に平行な磁束部 分とc軸に平行な磁束部分とに分離できる(図2)。そして、イ ントリンシック・ピンニングが強いため、H // ab 近傍を除いて 後者のみで $J_c(\theta)$ が決まる。 $J_c(H, \theta)$ はc軸に平行な磁束密 度成分 $B\cos\theta$ で決まるため、 θ の増加とともに $B\cos\theta$ が低 減して J_c が向上し、c軸方向付近の $J_c(\theta)$ ピークが消失す る。図1の薄膜では、c軸に平行な磁界中の $J_{cl}(B_{1}) =$ $J_{c0}(B_{1}/B_{0})^{-0.7}$ であったため [1]、角度 θ の場合でも同様にc軸方向の磁界成分で J_c が決まるとすると、

$$J_{\rm c}(\theta) = J_{\rm c0}(B\cos\theta/B_0)^{-0.7} \tag{1}$$

となる。(1) 式の計算結果を図1の破線 (open symbol) で示 すが、実験結果とかなり良い一致を示し、イントリンシック・ピン ニングに基づく新解釈の妥当性が検証された。

低温度における $J_{c}(\theta)$ ピークの消失を点欠陥ピンに帰する 解釈は、要素的ピン力密度 f_p の理論的な計算からも否定される。前報の予稿に示すとおり、ナノロッドピンのような c 軸に 平行な円柱ピン(直径 > 2 ξ_{ab} 、高さh)の場合、H // c $\mathcal{T}_{f_p} =$ $(\mu_0/2)H_c^2\pi\xi_{ab}^2h/2\xi_{ab} = (\mu_0/4)H_c^2\pi\xi_{ab}h$ となる [5]。印加磁界が B_{ϕ} より小さい場合、薄膜に侵入した磁束線は、全て、ナノロッ ドにピン止めされると考えられ、1本の磁束線(長さ L)に作用 するローレンツ力 $f_L = J_c\phi_L \ge f_p$ が等しくなる。 $h \approx L$ と仮定 すると、

$$J_c = (\pi \mu_0 / 4 \phi_0) H_c^2 \xi_{\alpha b} \tag{2}$$

と計算される。 $T_c \approx 94 \text{ K}$ の単結晶における $\xi_{ab}(4.2 \text{ K}) = 1.7 \text{ nm}$, $\mu_0 H_c \approx 1.0 \text{ T}$ [6] の値を用いて、 $J_c(4.2 \text{ K}) = 48 \text{ MA/cm}^2$ を得 る。4.2 K, 1 T における実測値は $J_c = 33.3$ MA/cm² であり、h < L であること、薄膜の T_c は上記単結晶よりも低いため、 H_c を過大評価していることを考慮すると、実測値は (2) 式の計算値とよく一致している。このことから、低温度において点欠 陥ピンが働いていないことは明確である。

(2) 式と、 $H_c(T) \sim 1 - (T/T_c)^2$, $\zeta_{ab}(T) \sim (1 - T/T_c)^{-1/2}$ から $J_{c\perp}(T) \sim (1 - T/T_c)^m (1 + T/T_c)^2$, m = 1.5 が予想される。しかし、 $B_{\perp} = 1 - 2$ T での温度依存性の測定結果は、熱励起磁束運動 の効果から、m は少し大きく、約 2.2 となった。これは、比較 的大きなナノ粒子の結果 [5] と同様であり、 $J_{c\perp}$ の温度依存 性の結果も、小さな点欠陥ピンの働きを否定する。

Fig. 1 $J_c(H, \theta)$ of BZO-doped (YGd)BCO thin film at 4.2 K in applied magnetic fields of 3–20 T. Solid lines with solid symbols are experimental data [1], and broken lines with open symbols are data calculated by Eq. (1).

Fig. 2 Schematic showing the stepwise penetration of a slant flux line in a (RE)BCO thin film with nanorod pins. The Lorentz forces exerted for the flux-line components parallel to the a-b plane (white arrows) and the components parallel to the c-axis (black arrows) are shown.

- 1. A. Xu et al.: Phys. Rev. B, Vol. 86 (2012) p. 115416.
- V. Selvamanickam et al.: Supercond. Sci. Tech., Vol. 27 (2014) p. 055010
- M. Tachiki M and S. Takahashi: Solid State Commun., Vol. 70 (1989) p. 291; Vol. 72 (1989) p. 1083
- 4. T. Horide et al.: ACS Nano, Vol. 11 (2017) p. 1780
- 5. H. Yamasaki, H. Yamada: Physica C, Vol. 542 (2017) p. 46
- 6. Z. Hao et al.: Phys. Rev. B, Vol. 43 (1991) p. 2844

人エピンのサイズを変化させた SmBa2Cu3Oy 高温超伝導薄膜の 臨界電流密度と磁化緩和特性

Critical current density and magnetization relaxation characteristics of SmBa₂Cu₃O_y high temperature superconducting thin films with varied size of artificial pins

<u>木内勝</u> (九工大); 土屋雄司, 杉原和樹, 一野祐亮, 吉田隆 (名大); 阿久根忠博, 西嵜照和 (九産大); 松下照男 (九工大) <u>KIUCHI Masaru</u> (Kyushu Inst. Of Tech.); TSUCHIYA Yuji, SUGIHARA Kazuki, ICHINO Yusuke, YOSHIDA Yutaka (Nagoya Univ.); AKUNE Tadahiro, NISHIZAKI Terukazu (Kyushu Sangyo Univ.); MATSUSHIT Teruo (Kyushu Inst. Of Tech.) E-mail: kiuchi@cse.kyutech.ac.jp

1. はじめに

RE コート線材の臨界電流密度特性向上のために、ナノ技術を用いた人工ピンの導入及び最適化が行われている。特に、酸化物超伝導体は臨界温度が高く、超伝導マグネットでは20 K 近傍、ケーブルでは70 K 近傍と利用温度領域が広い。このためコヒーレンス長が大きく変化することから、有効となるピンのサイズが異なってくる。更に、高温度領域では臨界電流密度の緩和の原因となる磁束クリープの影響が顕著になる。したがって、超伝導体の利用環境を考慮したピン設計が必要である。

本研究では、ピンの磁束線の長さ方向のサイズが臨界 電流特性へどのように影響を与えるのかを調べるために、 ナノロッドの長さを変化させた SmBa₂Cu₃O₂ 薄膜を準備 した。この薄膜の臨界電流密度及び見かけのピン・ポテン シャルを、SQUID 磁力計を用いて測定し、磁束線の長さ 方向のピンのサイズが臨界電流密度特性へどのように影 響を与えるのかを調べる。

2. 実験

SmBa₂Cu₃O_y 薄膜は IBAD-MgO 基板上に PLD 法で作製 した。準備した試料は、ピンが無添加試料: pure、多層膜 試料: ML 及びナノロッド試料: rod $0 3 \circ 0 \circ b \circ 3$ 。ML と rod 試料のピンの導入には、SmBa₂Cu₃O_yに 3 vol%の BaHfO₃を混合したターゲットを用いた。なお、ML は人工 ピンのあり、なしの層が各 10 層あり、1 層が 9 nm 程度で ある。臨界温度 T_{e} 、超伝導層の厚さ d 及び人工ピンの形 状を Table 1 に示す。

臨界電流密度及び磁化Mの緩和は、SQUID磁力計を用いて測定を行った。さらに、磁化の時間対数緩和率から見かけのピン・ポテンシャル U_0^* を求めた。全ての実験において、磁界は薄膜の広い面に対して垂直、すなわちc軸方向に加えた。従って、磁束線の長さ方向のピンサイズは、MLが9nm、rodが143nmである。

3. 結果及び検討

Fig.1 に 60、77 K の臨界電流密度 J_c の磁界依存性を示す。 60 K では ML の J_c が一番大きく、磁界依存性は rod と同程度 である。一方で、ピン無添加の pure は低磁界領域で J_c が大き く減少している。これらの傾向は、60 K より低い温度領域で同 様な振舞いで、今回導入した人エピンは 9 nm が特性向上に

|--|

有効であることがわかる。一方で、77Kでは、低磁界領域で J_c の大小関係は 60Kと同じであるが、4T近傍から、rodの J_c の方が大きくなる。即ち磁束クリープの影響が顕著になる場合は、rod 状ピンの方が J_c に対して有効に作用することがわかる。

Fig.2 に各試料の見かけのピン・ポテンシャル U_0^* の温度 依存性を示す。pureの中温度、低磁界領域の U_0^* は大きい が、磁界の増加と共に大きく劣化する。一方で、ML と rod では、磁界の増加による劣化は pure に比べて小さく、 U_0^* の磁界依存性も小さい。さらに、60 K よりも高い温度領 域においては、 J_c 特性と同様に、rod の U_0^* が一番大きく、 高温度領域では、磁束線の長さ方向に短いピンでなく、長 いピンの方が緩和は抑制されることがわかる。理論結果 との比較及び詳細な議論は発表当日行う。

謝辞

産総研和泉輝郎氏から IBAD 基板の提供を受けた。

Fig.1 Magnetic field dependence of critical current density of three samples.

Fig. 2 Temperature dependence of apparent pinning potential energy of three samples.

超伝導体の対破壊電流密度に関する理論的考察 Theoretical investigation of depairing current density in superconductors

<u>松下 照男</u>, 木内 勝(九州工業大学) <u>MATSUSHITA Teruo</u>, KIUCHI Masaru (Kyushu Inst. Tech.) E-mail: matsushita.teruo391@mail.kyutech.jp

1. はじめに

超伝導体に流せる最大の無損失電流は対破壊電流密度 で、断面がコヒーレンス長より小さい超伝導体で実現さ れ、Tinkham による計算では熱力学的臨界磁界を H_c , 侵 入深さを λ として $j'_d = (2/3)^{3/2} H_c / \lambda$ で与えられる¹⁾。 しかしながら、磁束ピンニングによるマクロな臨界電流 密度の最大値を求めた結果、0.6712 j_d となって Tinkham の値を超えた²⁾。臨界電流密度の場合、単に磁束フローを 生じさせるだけであり、これが超伝導を破壊する値を超 えるというのはおかしなことである。そこで改めて対破 壊電流密度を Ginzburg-Landau 理論により求めた。

2. 理論

まず,磁化電流の場合について考察する。空間変化が無 視できるので,G-Lエネルギー密度は

$$\mathcal{F} = \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{m^* j^2}{8e^2 |\Psi|^2} \tag{1}$$

となる。電流密度 j が一定の条件下で上式をオーダーパ ラメーター $|\Psi|^2$ に関して最小化すると

$$\alpha + \beta |\Psi|^2 - \frac{m^* j^2}{8e^2 |\Psi|^4} = 0$$
 (2)

となり, $x = |\Psi|^2$, $y = j\lambda/H_c$ と規格化すると

$$y^2 = 2x^3 - 2x^2 \tag{3}$$

となる。G-L エネルギー密度は電流密度の上昇とともに単 調に増加するので、電流密度の最大値は $\mathcal{F} = 0$ となって 常伝導状態に転移するとき $(y^2 = -x^3 + 2x^2)$ に得られる と予想される。上の条件と連立させて対破壊電流密度は x = 4/3 のときに

$$j_{\rm d} = 2\left(\frac{2}{3}\right)^{3/2} \frac{H_{\rm c}}{\lambda} \cong 1.089 \frac{H_{\rm c}}{\lambda} \tag{4}$$

となり, Tinkhamの理論値のちょうど2倍となる。

次に,輸送電流の場合,取り扱うのはGibbsの自由エネ ルギー密度

$$\boldsymbol{g} = \boldsymbol{\mathcal{F}} - \boldsymbol{A} \cdot \boldsymbol{j} \tag{5}$$

であり、この場合のベクトルポテンシャルは

$$\boldsymbol{A} = -\frac{m^* \boldsymbol{j}}{4e^2 |\boldsymbol{\Psi}|^2} \tag{6}$$

で与えられる。したがって、

$$g = \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{3m^* j^2}{8e^2 |\Psi|^2}$$
(7)

を同様に|Ψ|² に関して最小化し

$$y^2 = \frac{2}{3}x^3 - \frac{2}{3}x^2 \tag{8}$$

を得る。この場合,常伝導転移点では電磁環境は変わらないので,(5)式の第2項は同じである。したがって,常伝導状態の転移は再びF = 0のときに起こることになり,対破壊電流密度はx = 8/5のときに得られ

$$j_{\rm d} = 4 \left(\frac{2}{5}\right)^{3/2} \frac{H_{\rm c}}{\lambda} \cong 1.012 \frac{H_{\rm c}}{\lambda} \tag{9}$$

となる。この値は(4)式の値よりは小さいが, Tinkhamの理 論値より大きい。

3. 検討

Tinkham は磁化電流に対する対破壊電流密度を求めるに あたって、電流密度ではなく、|Ψ|² と独立な超伝導電子の速 度を一定にした状態で *F* を最小化した。しかし、この仮定の 下では電流密度は一定でなく、こうした手法では電流密度の 最大値を求めることはできない。Fig. 1 はオーダーパラメータ ー(x)-電流密度(y)平面上のG-Lエネルギー密度の等高線図 であり、今回求めた(4)式の値が真に超伝導状態における最 大値であることが理解できよう。これと比べて、Tinkham の臨 界点も示してあるが、極めて中途半端な状態にある。すなわ ち、この場合、G-L エネルギー密度は負で、超伝導状態が破 壊される環境にはない。なお、これと(4)式の臨界点を比較し た結果では、超伝導電子の速度は同じであるが、オーダーパ ラメーターの値の違いがそのまま電流密度の違いになってい る。

次に輸送電流の場合, Tinkham の取り扱いでは(5)式の第 2項のLegendre項の符号が異なっており,基本的に間違いで ある。このため,結果的に小さな対破壊電流密度となっている。

4. まとめ

G-L 理論を用いて二種類の対破壊電流密度を求めたが, いずれも Tinkham の理論値を大きく超えた。この結果は、とく に輸送電流の場合、ピンニングによる臨界電流密度の上限を 上回っており、矛盾は解決された。

Fig. 1. Contour map of the normalized Ginzburg-Landau energy density $f = (\mu_0 H_c^2/2)^{-1} \mathcal{F}$ on the order parameter (x) vs superconducting current density (y) plane. Broken lines 1 and 2represents Eqs. (3) and (8), respectively.

- M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996) pp. 123-126.
- 2. T. Matsushita and M. Kiuchi, Appl. Phys. Express 12, 023004 (2019).

マテリアルズ・インフォマティクスによる新超伝導体の発見

Data-driven exploration of new superconductor

<u>高野 義彦</u>, 松本 凌(NIMS, Tsukuba Univ.) <u>Takano Yoshihiko</u>, Matsumoto Ryo (NIMS, Tsukuba Univ.) E-mail: takano.yoshihiko@nims.go.jp

1. はじめに

マテリアルズ・インフォマティクスをはじめとしたデータ駆動 型材料研究の実用化が進む中、超伝導体などの物質探索は、 未だに研究者の知識や経験に依存した絨毯爆撃型の手法に よって行われている。本研究では、無機化合物データベース から抽出した 1570 の三元系化合物に対して、①ナローギャッ プ半導体、②バンド端が平坦でフェルミ準位近傍の状態密度 が高い、③圧力下でバンドギャップが小さくなるという3 つの 条件を満たす、圧力誘起超伝導体の候補を選定した。候補 中の SnBi2Se4(1)と PbBi2Te4(2)を合成し、圧力誘起超伝導を 観測した。そして3 つ目に合成に成功した AgIn5Se8 の特性 についても報告する。

超高圧力実験は物質の格子定数を直接制御できる強力 な手法である。一方で、超高圧力下での電気抵抗測定には、 微小かつ圧力で変形しない電極材料が必要であり、実験自 体の難易度が高いことが問題であった。そこで我々は圧力印 加装置であるダイヤモンドアンビルセル(DAC)のアンビルに 金属ダイヤモンドの微細電極を成膜することで、容易に高圧 力下電気抵抗測定を行える装置を開発した。

2. 実験と考察

図1に AgIn5Se8の結晶構造を示す。この物質のバンド ギャップは240 meV 程度であり、価電子帯に鋭い状態密度の ピークを示すが、40 GPa 程度の高圧力を印加しなければバン ドギャップは閉じない。それ以上の圧力では、構造相転移す る可能性が計算から示唆された。

図1 AgIn₅Se₈の結晶構造

AgIn5Se8 単結晶を合成し、ホウ素ドープダイヤモンド電 極導入型ダイヤモンドアンビルセル(3)を用いて高圧力下での 電気抵抗を測定した。図 2(a)に 50 GPa 程度までの電気抵抗 の温度依存性を、(b)に 85 GPa 程度までの低温付近の拡大 図を示す。AgIn5Se8 は常圧で 40 MΩ 以上の完全な絶縁体 であったが、理論で予測された通り、45 GPa 程度で電気抵抗 がほとんど温度に依存しなくなる金属的な性質を示した。加 圧を進めると、52.5 GPa で超伝導転移温度 Tc^{~3} K の圧力 誘起超伝導が観測された。先に発見した2つの物質に引き続 き、3つ連続で新超伝導体が発見できたことになる。74 GPa ま で加圧すると、振る舞いが明らかに変化し、構造相転移に起 因するものと思われる多段転移となった。講演当日は、データ 駆動型超伝導探索の最新の進捗を報告する予定である。

図2 様々な圧力下におけるAgIn5Se8の電気抵抗 の温度依存性

- (1) R. Matsumoto et al., APEX 11, 093101 (2018).
- (2) R. Matsumoto et al., Sci. Technol. Adv. Mater 19, 909 (2018).
- (3) R. Matsumoto et al., APEX 11, 053101 (2018).