イットリウム系三相同一軸高温超電導ケーブルの 長距離電力伝送に適したケーブル構成 Suitable structure of Y-based tri-axial HTS cable for long distance power transmission

<u>遠藤 夏実</u>, 篠崎 勇希, 宮城 大輔, 津田 理(東北大) ENDO Natsumi, SHINOZAKI Yuki, MIYAGI Daisuke, TSUDA Makoto (Tohoku Univ.)

E-mail: natsumi.endo.t7@dc.tohoku.ac.jp

1. はじめに

近年,洋上風力発電の利用に注目が集まっており,従来の 銅ケーブルに比べ大容量かつ低損失に送電できる超電導ケ ーブルを海底ケーブルに適用することが考えられている。日 本近海での洋上風力発電は 10 km 未満のポテンシャルが高 いことから, 10 km 程度の超電導ケーブルが必要になる[1]。 そこで,Y 系線材の交流損失特性の解析結果を踏まえ,液体 窒素の冷却特性を考慮したケーブル内部の温度分布を解析 することにより,Y 系三相同一軸高温超電導ケーブルの長距 離電力伝送に有効なケーブル構成方法について検討した。

2. 解析方法

本解析に用いた三相同一軸ケーブルの諸元を Table. 1 に 示す。各相は、銅テープで構成されたシールド層、超電導層、 絶縁用の PPLP®により構成され、コルゲート管に収容されると した。ケーブルの冷却は循環系の構築が簡易な向流を採用 した。冷媒は内側流路、外側流路の順に流れ、回帰するもの とした。各相における超電導線の交流損失特性は、有限要素 法による薄板近似モデルを用いた電磁界解析により評価した。 また、ケーブルの熱解析では、超電導線の交流損失、銅テー プ線材における渦電流損、PPLP®の誘電体損失、冷媒の摩 擦損失、ケーブル外部からの熱侵入を考慮した。冷媒となる 液体窒素の流体解析では、流れを Reynolds 数から判断し、 熱伝達と圧力損失を考慮した。

本検討では、三相同一軸ケーブルの適用先として洋上風 力送電用の海底ケーブルを想定しているため、低損失化およ び長距離化が求められる。そのため、各損失を比較し、支配 的な損失の低減に有効となるケーブル構成方法について検 討した。また、ケーブルの最長距離は、冷媒温度で決まる最 長距離と冷媒圧力で決まる最長距離の短いほうに依存すると した。

3. 解析結果及び考察

解析結果より, Table. 1のY系三相同一軸超電導ケーブル では,外部からの侵入熱が支配的であり,超電導層の交流損 失の占める割合は小さいことがわかった。また, 伝熱解析より, ケーブル内の冷媒温度が最大となる場所が外側冷媒流路の 入口付近となり、冷媒の冷却ポテンシャルを最大限に利用で きていないことがわかった。これは、外側冷媒から内側冷媒に 熱が伝搬することに起因していると考えられる。そこで,導体と 外側冷媒流路間に低熱伝導層を挿入し、ケーブル内部への 熱伝搬を抑制することを考えた。外部からの侵入熱とケーブ ル長の関係をFig.1に示す。Fig.1において、低熱伝導層を設 けない場合は、断熱管半径を59.0mmとし、低熱伝導層を設け た場合は、断熱管半径を69.0mmとした。また、Fig.1中のkは、 低熱伝導層の熱伝導率を示しており、本解析では目安として 硬質ウレタンフォームの熱伝導率(k = 0.018)と、その10分の1 の値を採用した。Fig.1より、低熱伝導層を適用することにより、 冷媒温度の制約による最長距離が長くなった。加えて,外部 からの侵入熱が小さくなると、それに応じて最長距離が長くな り,低熱伝導層ありの場合が,なし場合よりも,侵入熱の減少 に対する最長距離の増加率が大きくなった。これは,熱伝導

率を小さくして導体内部への熱伝導を抑制することで,内側 流路内の液体窒素温度の上昇を抑えることができたためと考 えられる。

以上より,洋上風力送電用の海底ケーブルを想定したY系 三相同一軸ケーブルにおいて,低熱伝導層を導体と外側流 路間に設けることが,内側冷媒・導体層への熱侵入の抑制に つながり,ケーブルの長距離化に有効であることがわかった。 したがって,導体径を小さくして高負荷率で運転し,冷媒圧力 の制約を受けるまでケーブル外径を小さくした上で,導体と外 側流路間に低熱伝導層を適用することが長距離電力伝送に 適していることがわかった。本検討では,高温超電導ケーブ ル実証プロジェクトより,侵入熱を6.78[W/m²]としているが[2], 侵入熱をこの約3分の1程度までに低減できれば,熱伝導率 (k = 0.018)の低熱伝導層を設けることにより,ケーブル長 10kmを達成できると考えられる。

Table. 1 Specifications of analytical model of tri-axial cable

Nominal voltage [kV]	11
Nominal current [kA]	3.0
Load factor of U phase	0.8
Inner radius of U phase [mm]	31.6
Number of coated conductor tapes (U/V/W)	45/47/50
Twist pitch [mm]	500
PPLP® insulation thickness [mm]	2.0
Thickness of low heat conduction layer [mm]	12
Flow rate of LN ₂ [L/min]	60
LN ₂ inlet temperature [K]	65
LN ₂ inlet pressure [MPa]	1.0

Fig.1 Dependence of maximum cable length on heat intrusion from outside.

参考文献

- NEDO: "着床式風力発電導入ガイドブック",第一 版,pp.22(2015)
- NEDO: "超電導技術開発/高温超電導ケーブル実証プロ ジェクト",分科会資料,資料 7-1-2①,pp.32(2014)

実規模長級 3km 66kV 系統高温超電導ケーブルの 短絡事故時の冷媒温度上昇予測解析

Simulation of Coolant in 275 kV HTS Cable on Short-circuit Current Accidents

<u>我妻 洸</u>, 堀田 大智, 石山 敦士(早稲田大学);森村 俊也, 増田 孝人(住友電工);三村 智男(東京電力) <u>AGATSUMA Koh</u>, HORITA Daichi, ISHIYAMA Atsushi (Waseda University); MORIMURA Tosiya, MASUDA Takato (Sumitomo Electric Industries Ltd.); MIMURA Tomoo (Tokyo Electric Power Company Holdings, Inc) E-mail: agatsumai@kurenai.waseda.jp

1. 研究背景·目的

超電導電力ケーブルは、それの持つ高電流密度,経済性, 環境性などの特徴から、電力システムの拡充や,超長距離送 電,環境を配慮した電力輸送の技術及び手段として期待をさ れている。しかし,実用化に向けた課題として,事故時の影響 評価や断熱管への侵入熱の低減といったものが存在する。 我々は、短絡事故時の安全性評価について、事故時に生じ る発熱にり変化する、ケーブル内各部の温度や冷媒の挙動を 計算するシミュレーションコードの開発を行ってきた。[1] この シミュレーションコードを用いて、実用規模の長さ3km 66kV系 統の HTS ケーブルの短絡事故時のシミュレーションを行った ので報告する。

2. モデルケーブルの解析条件

本研究では、Fig. 1 に示す 3 心一括型構造の高温超電導 ケーブルを対象とし、各種パラメタは Table 1 に示す。短絡電 流によって超電導ケーブル内に生じる熱の移動を,数値解析 によって算出した。計算速度向上と CPU メモリの負担低減の ため、3 次元の円柱座標系の非線形熱伝導方程式にエネル ギーバランスを加味して、次式のような長手方向 1 次元の非 線形偏微分方程式に変形し、差分法により計算を行った。

$$\rho C \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial r^2} + Q_{in} + Q_{out}$$

ケーブルコア壁面における冷媒への熱の移動は,強制熱 伝達によるものとし算出し、長手方向に 1500 分割し、分割要 素内の冷媒は均質と仮定した。入力パラメタを Table 1 に示す。 冷媒の特性は GASPAK© (Cryodata 社)を用いて計算した。

3. 解析結果

ケーブルの出口部における、各層の温度変化を Fig. 2 に、 ケーブル長を変えて計算した結果を Fig. 3 に示す。

また、入り口圧力を増加させた場合の計算結果は、約 6.5 atm 以上にすると、出口部の LN2 の温度を飽和温度以下に 抑制できることが分かった。

Table 1.	Prameters	of 3km	the	Model	Cable

Parameter	Value			
Inlet Temperature of cable	67 K			
Inlet pressure of LN ₂ coolant	500 kPaG			
Initial volume flow rate of LN_2 coolant	60 L/min			
Heat load	2.0 W/m			
Joule self-heating of conductor layer	73.97 kW/m/ph			
(with fault current of 31.5 kA)				
Joule self-heating of shield layer	88.62 kW/m/ph			
(with fault current of 31.5 kA)				
AC loss of conductor layer (3.0 kA)	0.6 W/m/ph			
AC loss of shield layer (3.0 kA)	0.3 W/m/ph			
Dielectric loss (66 kV)	0.1 W/m/ph			
Outer radius of conductor layer	12.38 mm			
Outer radius of dielectric layer	19.95 mm			
Outer radius of shield layer	22.09 mm			
Outer radius of protection layer	23.00 mm			
Average inner radius of corrugated pipe	53.50 mm			
Fanning friction factor	0.0175			

Fig.1 Picture of a three-in-one HTS cable

Fig. 3. Calculated temperatures of the coolant and at each layer at the outlet. (a) 20 m cable. (b) 3 km cable.

参考文献

 T. Yasui, K. Agatsuma, et al. "Temperature and pressure simulation of a 1.5-km HTS power cable cooled by subcooled LN₂ with a fault current," *IEEE Trans. Appl. Supercond.*, vol. 26, no. 3, Apr. 2016.

謝辞

本研究の一部は NEDO の助成事業「高温超電導実用化 促進技術開発」により実施した。

石狩断熱2重管の熱侵入をもとにした 100km 高温超電導直流送電システムの検討 Thermo-hydrodynamic analysis of 100km DC superconducting power transmission system based on Ishikari Project

<u>山田 貴雄</u>,藤波 貢,飯塚 隆(日揮*,**);佐藤 昭夫(JFE スチール*,**);澤村 徹(さくらインターネット*,**); 阿部 洋一(住友電設**);平井 寛一(大陽日酸**);平井 真一(ジェック東理社**);和歌森 毅(イーグル工業**); 小橋 康浩(パワーユナイテッド**);石原 範之(みずほ情報総研**);リー セルゲイ(SuperOx Japan**);小林 修二(三菱商事**); 水澗 亨(清水建設**);砂山 浩紀(安藤・間**);山口 作太郎(中部大*,**)

<u>YAMADA Takao</u>, FUJINAMI Mitsugu, IITSUKA Takashi (JGC); SATO Akio (JFE Steel); SAWAMURA Toru (Sakura Internet);
 ABE Yoichi (SEM); HIRAI Hirokazu (Taiyo Nippon Sanso); HIRAI Shinichi (JTC); WAKAMORI Tsuyoshi (Eagle Ind.,);
 KOBASHI Yasuhiro (PU); ISHIHAEA Noriyuki (Mizuho); LEE Sergey (SuperOx Japan); KOBAYSHI Shuji (MC);
 MIZUMA Toru (Shimizu); SUNAYAMA Hiroki (Hazama Ando); YAMAGUCHI Sataro (Chubu Univ., S4L)
 E-mail: yamada.takao@jgc.com

1. はじめに

超電導直流送電に期待される特長には「低損失」が最初に 挙げられる。これはケーブルが長くなればなるほどその特長を 生かすことができる。このため、長距離ケーブルの開発が必 然的に重要なテーマになる。低損失を実現するためには、断 熱2 重管への熱侵入量を低減する必要があるが、同時に冷 媒循環のためのポンプ吐出圧やその動力の課題もある。現在 までの多くの超伝導ケーブル実験装置では、ケーブル用冷 媒流量が数+L/minで、2K/km - 4K/km 程度である。このた め、冷凍機からの吐出冷媒温度が 70K とし、77K で冷凍機に 戻すとすれば、冷凍機を設置する距離は精々5km ほどになる。 流量を上げれば温度上昇を低減できるが、それには極めて 高い冷媒循環ポンプの吐出圧が必要となり、距離が数 km で さえ技術的には極めて実現が困難な状況である。

一方、日本での一次変電所や二次変電所の距離は大都 市では 10km - 20km であり、発電所、変電所間距離は海外 ではもっと長い。このため、変電所以外に冷凍機ステーション を設置することが求められる。これは超伝導ケーブルを用い て、低電圧・大電流送電を行い、都市部での変電所設置を節 約できる特長を殺すことになる。

この状況を抜本的に解決するために、石狩プロジェクトで は輻射シールド付き断熱2重管の研究開発を行い、試験を行 ってきた。その結果、冷媒流量が30L/minで温度上昇が0.04 K/km と言う極めて低いデータと同時に、断熱2重管の冷媒 往復で熱侵入量が0.88W/mと言う低い値を得ることができた。 このため、このデータを利用して長距離超伝導ケーブルの設 計検討を一昨年の学会では10kmケーブルについて山口他 が既に発表しているが、このたび(一社)新金属協会に設置さ れた地域低温熱エネルギー利用電力システム実用化研究 会 (略称 S4L) で本格的な機器パラメータやコスト評価を含め 検討を行って来た。ここでは、熱・流体力学検討を中心に述 べる。

2. 100km ケーブルの設計例

Fig. 1 に 100km に亘って冷却ステーションを設置せず、端 末両端にのみ冷凍機を設置した検討結果の一例を示す。こ れは石狩回線 2 の輻射シールド付き断熱 2 重管のデータを 利用して検討を行っているが、同時に幾つかの仮定も設定し ている。冷媒流量を 60L/min と石狩実験の倍にすると、圧損 が上昇し、現有のポンプ吐出圧を 1MPa の範囲に収めるため、 管径を大きくしている。一方、輻射シールドのサイズは変わら ないため、特に冷媒リターン管に入る熱量は変わらないとして いる。冷媒としての液体窒素の最高温度を96K(飽和圧力が~ 0.5MPa)とし、それを超えたときには大気中にフラッシュするこ とで 77K に再冷却される。この類似方式はドイツ・エッセン市 の AmpaCity Project で用いられている。これから分かるように 50km ではフラッシュ冷凍機が不要になる。このため、次期計 画では熱侵入量目標を石狩の半分とするつもりである。また、 現状の熱侵入量であっても、流量を80 L/min とすれば、フラ ッシュ冷凍機は1台で済む。

3. 電力パラメータ等

輸送電力は 500MW とし、B-to-Bの電力輸送を想定して、 電圧は±50kV 以下の複数のパラメータでケーブル及び電力 変換器及び安全器の検討を進めている。

本研究を進めるために石狩市, 新金属協会,(株)ABB,(株)三 徳,愛知電機(株)の協力を頂い た。記して感謝を表す。

(*)石狩超電導・直流送電システム技術研究組合
(**)地域低温熱エネルギー利用電力システム実用化研究会

参考文献

S. Yamaguchi et al, "Construction and 1st Experiment of the 500meter and 1000-meter DC Superconducting Power Cable in Ishikari", Physics Procedia, Volume 81, 2016, Pages 182-186.

Fig. 1 Thermo-Hydrodynamic analysis of 100km SC power transmission line

再生可能エネルギーの大量利用の鍵となるエネルギー貯蔵機能を有する 超伝導ケーブルの可能性 Potential of Superconducting Cable with Energy Storage Function for Large-scale Introduction of Renewable Energies

<u>東川 甲平</u>, 木須 隆暢 (九大) <u>HIGASHIKAWA Kohei</u>, KISS Takanobu (Kyushu Univ.) E-mail: kohei@super.ees.kyushu-u.ac.jp

1. はじめに

地球環境のみならず、我が国のエネルギー安全保障の観 点からは、輸入に頼る化石燃料への依存を緩和せねばならず、 太陽光や風力に代表される再生可能エネルギーの導入拡大 が喫緊の課題となっている。実際に、固定価格買い取り制度 の実施により、その導入拡大は飛躍的に進んでおり、2017 年 のゴールデンウィークには九州電力管内で太陽光発電が電力 需要の7割をカバーするようなタイミングがあった^[1]。このような ポテンシャルが見られる一方、特に再生可能エネルギーの大 半を占めていくと考えられる太陽光発電では、曇りの日におけ る日射量の変化が大幅かつ急激となり、その変動の吸収には 非現実的な出力容量の電池類が必要となるなど、現状の電力 系統では、受け入れ許容量に限界が迫っている^[2]。そこで本 研究では、再生可能エネルギーの大量利用の鍵となるエネル ギー貯蔵機能を有する超伝導ケーブルの可能性を検討する。

2. 提案内容

Fig. 1 に本提案の概略を示す。インダクタンスの大きな超伝 導ケーブルを直流で運用することにより、電力を磁気エネルギ ーとして貯蔵することを可能とするものである。これまでのところ、 超伝導技術の導入により電力輸送時の損失を低減することだ けでもメリットが叫ばれていたが、それに加えて今後の再生可 能エネルギー大量導入拡大を支える機能まで有することにな る。また、原理は SMES に近いが、そのための多大なスペース や設備を必要としないところも特長となっている。その他、①再 生可能エネルギーと近年の負荷に親和性の高い直流運用で あること、②再生可能エネルギー導入時の電力貯蔵設備の逐 次増強が不要となること、③電池類では困難となる高速大出力 動作を電力系統自体が行えることが特長として挙げられる。

3. 検討例

一例として、Fig. 2 に示すように、太陽光発電を有する 10 MW級(1 kV, 10 kA級)のマイクログリッドの直流運用を考え、 このマイクログリッドと商用系統の接続点を1kVの電圧源とし、 そこにインダクタンスの大きな超伝導ケーブルを導入すること を想定した。このようなマイクログリッド内の調整可能電源の応 答速度、またその動作停止・再運転にかかる時間を考慮し、超 伝導ケーブルが蓄えておくべきエネルギーは最大でも1GJで あると見積もり、超伝導ケーブルのインダクタンスを 20 H(2 mH/mを10kmと想定)と設定した。なお、COMSOLを用いた 電磁界解析により、このような超伝導ケーブルが非現実的では ないことを確認した。このとき、太陽電池パネルからの出力変 動が商用系統側にどのように伝わるかを MATLAB/Simulink によって計算した。その結果をFig.3に示す。太陽電池パネル からの出力(Ppv)波形は、文献[3]のデータを定格 15 MW に換 算したものを用いた。1秒に定格の5%以上も変化するような激 しい変動であり、このような急峻な変化を調整可能電源で補償 することは困難である。一方、商用系統側に流れる電力(PIB) は、かなり平滑化されており、その変化は1秒に定格の0.15% 未満にまで抑制された。このような平滑化は、超伝導ケーブル がそのエネルギー貯蔵機能により自動的に出力(Psc)補償し たことによるものである。すなわち、この単純な例では、10 MW

級のマイクログリッドにおいて 5 MW にも及ぶ出力変動補償を、 電池類もなしに超伝導ケーブルだけで行えることとなった。

謝辞

本研究は、NEDO の「エネルギー・環境新技術先導プログラム/未踏チャレンジ 2050/革新的エネルギーネットワーク基盤技術の創製」の一環として行うとともに、岩谷直治記念財団による助成を得て行ったものである。

参考文献

- [1] 「太陽光、一時需要の7割 九電のGW電力需給状況」 日本経済新聞(2017年5月24日).
- [2]「再生エネ政策仕切り直し」 日本経済新聞(2014年10月1日).
- [3] 「八戸市 水の流れを電気で返すプロジェクト」NEDO.

Fig. 1. Conceptual diagram of power system with energy storage function by DC superconducting cable.

Fig. 2. Example of the application of DC superconducting cable to 10-MW-class micro grid.

Fig. 3. Smoothing of output fluctuation from photovoltaic array based on energy storage function by DC superconducting cable: P_{PV} : output from photovoltaic, P_{IB} : output to infinite bus, P_{SC} : output compensation by the cable.

インジウム箔を用いた高温超伝導線材の超音波接合の基礎検討 Fundamental examination of ultrasonic welding of high-temperature superconducting tapes using an indium foil

<u>伊藤</u>悟,藤井 啓道,佐藤裕,橋爪 秀利(東北大学) <u>ITO Satoshi</u>, FUJII Hiromichi T., SATO Yutaka S., HASHIZUME Hidetoshi (Tohoku Univ.) E-mail: satoshi.ito@qse.tohoku.ac.jp

1. はじめに

著者らは高温超伝導線材の簡易接合法として、インジウム 箔を接合部に挿入し、100°C 程度の熱処理でプレスして接合 する機械的接合法[1]の開発に取り組んできた。一方、さらに 簡易的に接合できる可能性がある超音波接合を用いた REBCO線材の直接接合・はんだ接合の事例[2]も報告されて いる。このたび、著者らはインジウム箔を接合部に挿入する体 系で REBCO線材, Bi-223線材をそれぞれ超音波接合した 接合サンプルを製作し、液体窒素浸漬冷却下にて、その接合 抵抗、臨界電流を評価した。本発表では、得られた超音波接 合サンプルの評価結果、および機械的接合サンプルの接合 性能との比較について報告する。

2. 実験方法

高温超伝導線材として、4 mm 幅の銅安定化層付 REBCO 線材(Superpower, SCS4050-AP, 臨界電流 100 A at 77 K, self-field) および 4.3 mm 幅の Bi-2223 線材(住友電工, DI-BSCCO Type-H, 臨界電流 180 A at 77 K, self-field)を用いた。 まず各線材の接合面を#240の研磨紙で研磨し,エタノールで 洗浄した後に、厚さ100 µmの In 箔を接合面に挟み、1) Fig. 1 に示す超音波接合機(精電舎電子工業, SNOPET ΣGM-1200) で接合圧力 0.3 MPa, 超音波振動周波数 19.15 kHz, 超音波 振動振幅 51 µm, 接合時間 0.1 秒に設定(超音波接合:線材 ごとに3サンプルずつ),2) プレス機で接合圧力100 MPaを 接合部に与えながら 100℃ に 10 分間保持(機械的接合:線 材ごとに1 サンプルずつ),して各接合サンプルを製作した。 続いて,製作した接合サンプルを液体窒素浸漬冷却して通 電試験を実施し, 接合抵抗および臨界電流を四端子法を用 いて評価した。なお, 接合長がサンプルによってばらついて いること(4~6 mm 程度)や,他接合法との比較のために,接 合抵抗と接合面積の積である接合抵抗率(単位 nΩcm²)を接 合性能の評価基準として用いる。

3. 結果と考察

Fig. 2 に得られた電流-電圧特性を, Table 1 に各サンプル の評価結果を示す。なお,臨界電流は接合抵抗分の電圧を 引いたうえで 1 μV/cm 基準で評価した。Fig. 2, Table 1 に載 せたサンプル名は, RE: REBCO 線材, Bi: Bi-2223 線材, UW: 超音波接合, MJ: 機械的熱合を意味する。REBCO 線 材の接合サンプルでは, いずれの接合方法でも同等の接合 抵抗率が得られており, また,臨界電流の低下もほとんどない 結果となった。一方, Bi-2223 線材の場合,特に超音波接合 の場合に臨界電流が大幅に低下した。今後,超音波接合時 に Bi-2223 線材に発生するひずみ,および温度上昇を詳細 分析して,臨界電流低下の原因を特定し,条件を最適化する 必要がある。なお接合抵抗率については,接合法による大き な違いは見られていない。

REBCO線材の接合サンプルで得られた接合抵抗率は, 銅 安定化層付 REBCO線材のハイブリッド接合(超音波接合と InSn ハンダ接合の組合せ)での結果(57 n Ω cm²)[2]や銅安定 化層無 REBCO線材の金属ナノ粒子ペースト接合(48 n Ω cm²) [3]に比べて小さい。また, Bi-2223線材の接合サンプルで得 られた接合抵抗率も、同線材のはんだ接合で得られる接合抵 抗率(~30 n Ω cm²)[4]と比べて小さい、またはわずかに大き い程度であった。一方,比較している接合法[2-4]では,より長い接合部を有するサンプルでの接合抵抗評価を行っており, インジウム箔を用いた機械的接合法や超音波接合法においても,より長い接合部を有するサンプルを製作し,その接合性能を評価する必要がある。

4. まとめ

In 箔を接合部に挿入して REBCO 線材と Bi-2223 線材の 超音波接合サンプルを製作した。接合抵抗率は機械的接合 法のそれと同等のものが得られたが、Bi-2223 線材を用いた 場合は臨界電流の低下も確認された。今後、臨界電流低下 の原因特定・防止を図るとともに、より長い接合部を有する接 合サンプルの製作に取り組む予定である。

参考文献

- 1. T. Nishio, et al.: IEEE Trans. Appl. Supercond., Vol. 27 (2017) Art ID 4603305.
- 2. HS. Shin, et al.: Supercond. Sci. Technol., Vol. 29 (2016) Art ID 015005
- T. Nakanishi et al.: Physics Procedia, Vol. 81 (2016) pp.105-108.
- 4. G. Osabe et al.: Physica C, Vol. 470 (2010) pp.1365-1368.

Fig. 1 Ultrasonic welding machine and its joint sample.

Fig. 2 Current-voltage characteristics of joint samples: (a) REBCO tapes and (b) Bi-2223 tapes.

Table 1	Specification	s for	each	sample	(<i>I</i> c:	Critical	current,
RJ: Joint	resistance, SJ	: Join	t area,	R _J S _J : Jo	int r	esistivity).

Sample	$I_{\rm C}({\rm A})$	$R_{\rm J}$ (n Ω)	$S_{\rm J}~({\rm mm^2})$	$R_{\rm J}S_{\rm J}$ (n $\Omega {\rm cm}^2$)
RE-UW1	101	220	14.4	31.7
RE-UW2	92	268	12.6	33.8
RE-UW3	99	236	13.8	32.6
RE-MJ	100	176	20.0	35.2
Bi-UW1	37	106	18.9	20.0
Bi-UW2	22	233	16.6	38.6
Bi-UW3	71	107	17.0	18.2
Bi-MJ	159	90	23.7	21.3