高気孔率を有する多孔質金属による高エミッシビティ材料の開発

Development of high emissivity material made of foam metal of high porosity

<u>高田 卓</u>(核融合研);井上 優貴 (ACADEMIA SINICA/総研大);都丸隆行 (高エネ研) <u>TAKADA Suguru (NIFS)</u>; INOUE Yuki (ACADEMIA SINICA/Soken U.); TOMARU Takayuki (KEK) E-mail: takada.suguru@LHD.nifs.ac.jp

1. 研究背景

昨今、極低温を必要とする宇宙機等では極低温におい ても高エミッシビティ(放射率)、つまり長波長域におい て黒体とみなせる機能性材料の開発が必要となっている。 高い放射率と高い熱伝導率、耐宇宙線性の要素を兼ね備 える黒体が求められており、全てを同時に達成すること が課題となる。本研究においては、発泡金属やfoam metal と呼ばれる高気孔率を持った多孔体金属の中でも銅を使 った黒体開発に臨んだ。

2. 発泡銅を用いた黒体の作成

幾何学的に複雑な多重反射を生む多孔体を利用するこ とで、高放射率を達成することが主眼であるが、反射す る金属材料を黒化することでより高い効果を狙うもので ある。最も単純な黒化方法として酸化銅を析出する方法 を利用した。酸化銅表面を作ることで、赤外領域におい て低反射率となることが良く知られており¹⁾、効果が期待 できる。

水酸化ナトリウムを主な成分とする市販の強アルカリ 溶液(エボノールCスペシアール:Meltex 社製)を用いて、 下記の化学式による反応を90℃の環境で2,10分間と浸す 時間を変更し製作した。

 2Cu + Ox + H2O → 2Cu(OH)2 (Ox:酸化剤)
 (1)

 2Cu(OH)2 → 2CuO+H2O
 (2)

 なお、銅板は空気中に放置すると Cu0、Cu20 とも析出す

る。本製作法であっても変色する程自然酸化したサンプ ルでは反応後の仕上がりも違う。本研究では明確な自然 酸化によって変色する前のサンプルを使用しているが、 酸化膜を除去してから酸化する手順は踏んでいない。

3. 輻射率計による放射率測定

本実験では三菱マテリアル社製の発泡銅(平均孔径 150µm,厚さ0.5 mm)気孔率90%以上のものを用いた。 比較のために平滑面を持つ銅板を上記の黒化処理したも のを用意し、市販の半球放射率計(TSS-5X:日本センサ ー社製²)を用いて放射率を測定した。使用した放射率計 は14~150THz領域に感度を持ち、全放射率を測定する能 力を有する。

室温下で測定した結果を下記の表に示した(Table.1)。酸 化反応時間を上昇するほど放射率は増加する。酸化銅に 形成される棘状の酸化膜の厚みが影響していると考えら れる。平滑な表面を持つ銅板を酸化したものと比較する と、多重反射の効果を反映して高い放射率を生んでいる と考えられる。

4. 極低温下における輻射熱伝達測定

極低温下において、平行平板間に伝わる輻射熱伝達量を 直接測定することを試みた。Fig.1に測定装置の概念図を 示す。G-M 冷凍機のコールドヘッドの端部に平行平板上に 黒化処理した発泡銅を設置し、ヒータによって温調され た上部平板(図中 Heater 1)から、下部の平板への輻射 熱伝達をステンレス製のサポート治具に生まれる温度差 を元に通過する熱流量を測定することで、放射率を評価 した。僅かな熱流量を測定する為、熱流量の較正用ヒー タ(Heater 2)を設置し、本セットアップにおける温度計 の自己発熱、配線による熱リークを含んだ温度差と熱流 量の関係を別途較正している。また、放射面温度 T_{rad} と 吸収面温度 T_{abs} の関係を変化させるため、セットアップ全 体を覆う銅チャンバーの温度を Heater 3 によって制御し た。放射面・吸収面は ϕ 50 である。

こうして得られた複数の温度差における輻射熱伝達量*Q*を用いて、下記の等式を元に整理した。

$$\frac{F\sigma\left(T_{rad}^{4}-T_{abs}^{4}\right)}{Q} = \frac{1}{\alpha_{T_{abs}}} + \frac{1}{\varepsilon_{T_{rad}}} - 1$$
(1)

ここでFは形状係数、 σ はステファン-ボルツマン定数、 α は吸収率、 ε は放射率である。形状係数は平行平板間の ギャップと平板の形状から算出されるもので本実験では 0.9 である³⁾。透過成分が無い為、吸収率と放射率は等価 であると算出できるが、温度依存性を持つ為、厳密には 放射率の算出は出来ない。本実験では、Fig.2 に各測定点 で $\alpha = \varepsilon$ として放射率を算出してまとめた。横軸のバーは 測定された T_{rad}から T_{abs}に渡って引かれ、この温度の間の 平均化された放射率として示している。この結果、 黒化 した発泡銅は極低温下 40K 以下からピーク波長が長くな ることに伴って放射率が低下することが判った。

Table.1 Effect to the emissivity of oxidized copper materials

	before	after
oxized foam copper (2 min)	0.35	0.685
oxized foam copper (10 min)	0.35	0.825
oxized copper plate (2min)	0.055	0.295
oxized copper plate (10min)	0.055	0.595

Fig.1 Schematic sketch of measurement setup of radiative heat transfer

Fig.2 Temperature dependence of averaged emissivity of oxidized copper foam

参考文献

- 1) J. Yamamoto, Cryogenics 19 (1979) pp. 87-88
- 2) http://www.japansensor.co.jp/products/TSS-5X.html
- 3) J.P. Holman, Heat transfer (McGraw Hill)

住友重機械工業の宇宙用低温機器の 30 年

30 years history of space cryogenics in Sumitmo Heavy Industries, ltd.

<u>金尾 憲一</u>, 楢崎 勝弘, 恒松 正二, 吉田 誠至, 大塚 清見(住友重機械工業) <u>KANAO Ken'ichi</u>, NARASAKI Katsuhiro, TSUNEMATSU Shoji, YOSHIDA Seiji, OTSUKA Kiyomi (SHI) E-mail: kenichi.kanao@shi-g.com

1. はじめに

住友重機械工業の低温技術は、1962年に神奈川県平塚 市に低温関連の研究所を設立したことに始まった。その後 1987年に宇宙航空研究開発機構(JAXA)と共同で宇宙用低 温機器の開発に着手したことが宇宙との係わりの始まりであっ た。それ以来 30年にわたり、人工衛星に搭載する機械式冷 凍機、液体、固体寒材のタンクの開発してきている。1987年 頃は宇宙で4K以下の温度が必要な場合、液体へリウムを使 用することが主流であったが、近年では、寒剤と機械式冷凍 機を併用するシステムや、機械式冷凍機のみで生成すること を実現する要求が主流になってきている。本講演では4K以 下の冷却機器を中心に、開発の経緯を紹介することで、これ までの宇宙用低温技術の系譜を振り返る。

2. 液体寒剤のみで冷却するデュワー

1995年に多目的の宇宙実験用プラットフォームである SFU (Space Flyer Unit)に搭載されて打ち上げられた IRTS(Infrared Telescope in Space)は、日本の赤外線天体観 測機器として初めて軌道に投入されたものである[1]。液体へ リウムを搭載した日本で初めての機器でもあった。超流動へリ ウムを使って赤外線検出器を冷却し、約1ヶ月間観測できた。 図1はIRTSの外観写真である。SFUは1996年にスペースシ ャトルで回収され、現在は国立科学博物館に展示されてい る。

Fig.1 IRTS Cryostat

3. 液体寒剤と機械式冷凍機を組み合わせたデュワー

IRTS の後、2006 年に打ち上げられた赤外線天文衛星「あ かり」でも検出器は液体ヘリウムで冷却された。「あかり」では 観測期間を延ばすため、液体ヘリウムタンクの周囲に設けら れた 3 層の輻射シールドを、蒸発したヘリウムガスと「あかり」 用に開発した2段スターリング冷凍機を併用して冷却するハイ ブリッド冷却方式が採用された[2]。図2は「あかり」のデュワー の断面図である。2 段スターリング冷凍機が 2 台搭載され、 170Lの液体ヘリウムを1.5年保持できた。 従来の液体ヘリウ ムのみの冷却方式に対して、同じ観測期間を 1/7の液体ヘリ ウム量で達成できた。 液体ヘリウムを消費した後も 2 段スタ ーリング冷凍機のみで近赤外線観測を約 3 年継続した。図2 は「あかり」に搭載されたデュワーの断面図である。

Fig.2 Cross section of AKARI Dewar

4. 機械式冷凍機のみで冷却するデュワー

2009 年に打ち上げられ、国際宇宙ステーションで運用された「SMILES」は、機械式冷凍機だけで4Kを生成した。「あかり」に搭載した2段スターリング冷凍機を予冷機としたジュールトムソン冷凍機で4Kを生成し、超電導ミキサーを冷却した[3]。図3はSMILESの冷却システムの外観写真である。

Fig.3 Cryogenic system of SMILES on ISS

5. おわりに

住友重機械工業における宇宙用低温機器の歴史を振り返った。本講演に続く3講演では、これまでの集大成とも言うべきX線天文衛星「ひとみ」搭載軟X線スペクトロメータ用デュワーの開発について述べる。

参考文献

- M. Murakami et al. J. Cryo. Soc. Jpn, vol.31 (1996) no.6, p. 297–306
- H. Murakami et al. Proceedings of SPIE, vol.3356 (1998), 471-477
- 3. K. Narasaki et al. Adv. Cryo. Eng., 49B 2004), 1785-1796

— 95 —

X線天文衛星「ASTRO-H」搭載軟X線スペクトロメータ用デュワー開発 その1 設計

Development of a Dewar for the Soft X-ray Spectrometer on the X-ray astronomy satellite ASTRO-H (1) Design

<u>吉田 誠至</u>, 金尾 憲一, 宮岡 幹夫, 星加 俊二, 楢崎 勝弘, 恒松 正二(住友重機械); 満田 和久, 山崎 典子, 竹井 洋 (JAXA); 藤本 龍一(金沢大); 江副 祐一郎(首都大) <u>YOSHIDA Seiji</u>, KANAO Ken'ichi, MIYAOKA Mikio, HOSHIKA Shunji, NARASAKI Katsuhiro, TSUNEMATSU Shoji (SHI); MITSUDA Kazuhisa, YAMASAKI Noriko, TAKEI Yoh (JAXA); FUJIMOTO Ryuichi (Kanazawa University); EZOE Yuichiro (TMU) E-mail:seiji.yoshida@shi-g.com

1. はじめに

2016年2月17日に打ち上げられたX線天文衛星「ASTRO-H」 に搭載される観測装置の一つである軟X線スペクトロメータは, 検出器を,断熱消磁冷凍機(ADR)を用いて50mKまで冷却す る。ADRが稼働できる極低温環境を実現するための冷却シス テム(デュワー)の開発を行った。本稿では、この冷却システム の設計について述べる。

2. 冷却システム設計

冷却システムへの主な要求事項は、ADR とのインタフェー スを1.3K以下に冷却し、かつその温度を3年以上保持するこ とである。この要求を満足するために、液体ヘリウムと冷凍機 を用いたハイブリッドな冷却システム¹⁾の開発を行った。

図1に冷却システムの概念図を、図2に断面図を示す。こ の冷却システム内にはヘリウムタンクがあり、ヘリウムタンク内 を減圧することにより液体ヘリウムの温度を下げ、1.3K以下を 実現している。ヘリウムタンクには、軌道上の無重量状態で蒸 発ガスのみを排気するポーラスプラグ(PP)を搭載している。さ らに、PPからの微量の液体ヘリウムの漏れをヘリウムタンクに 戻すフィルムフロー抑制システム²⁰が搭載されている。ヘリウム タンクから蒸発したガスヘリウムの顕熱で冷却する4層の熱シ ールド(JTシールド、IVCS、MVCSおよび OVCS)があり、寒剤 である液体ヘリウムを有効に使用する手立てがなされている。

ヘリウムタンクへの伝導入熱を低減するために、ヘリウムタンクは、強度が高く、熱伝導率が低い炭素繊維強化プラスチック(CFRP)をベルト状にしたストラップ12本でIVCSから吊り構造で支えられており、さらに、IVCS はガラス繊維強化プラスチック(GFRP)をベルト状にしたストラップ12本でメインシェル(MS)から支えられている2段の吊り構造となっている。

IVCS と OVCS を冷却するシールドクーラ(SC)は,2 台の2 段スターリング冷凍機を使用し,それぞれを 30K 以下,150K 以下に冷却する。JT シールドを冷却する JT 冷凍機(JT)は,そ のシールドを4.5K 以下に冷却する。JT の予冷冷凍機(PC)とし ても,2 台の2 段スターリング冷凍機を使用している。

この冷却システムは液体ヘリウム枯渇後も、観測効率は落ちるが、冷凍機のみで冷却する「Cryogen-free」モードがある。 JTの運転電力を上げて、ヘリウムタンクとJTシールドとの間に 設置された ADR の運転による発熱を含めて、JT シールドを 4.5K 以下に冷却することにより、センサを 50mK に冷却するこ とができる。

3. おわりに

「ASTRO-H」に搭載される軟 X 線スペクトロメータ用デュワ ーの設計を行った。要求を満たす設計結果が得られている。

参考文献

- S. Yoshida, et al., Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H, Cryogenics 74 (2016) 10-16.
- Y.Ezoe, et al., Flight model measurements of the porous plug and film flow suppression system for the ASTRO-H Soft X-ray Spectrometer dewar, Cryogenics 74 (2016) 17-23.

Fig.1 Schematic of the cooling system

Fig.2 Cross-sectional view of the cooling system

X線天文衛星「ASTRO-H」搭載軟X線スペクトロメータ用デュワー開発 その2 地上試験と射場オペレーション

Development of a Dewar for the Soft X-ray Spectrometer on the X-ray astronomy satellite ASTRO-H (2) Tests on ground and launch operation

<u>吉田 誠至</u>, 金尾 憲一, 恒松 正二(住友重機械); 満田 和久, 山崎 典子, 竹井 洋 (JAXA); 藤本 龍一(金沢大); 江副 祐一郎(首都大) <u>YOSHIDA Seiji</u>, KANAO Ken'ichi, TSUNEMATSU Shoji (SHI); MITSUDA Kazuhisa, YAMASAKI Noriko, TAKEI Yoh (JAXA); FUJIMOTO Ryuichi (Kanazawa University); EZOE Yuichiro (TMU) E-mail:seiji.yoshida@shi-g.com

1. はじめに

2016年2月17日に打ち上げられたX線天文衛星「ASTRO-H」 に搭載される観測装置の一つである軟X線スペクトロメータは、 検出器を、断熱消磁冷凍機(ADR)を用いて50mKまで冷却す る。ADRが稼働できる極低温環境を実現するための冷却シス テム(デュワー)の開発を行った。本稿では、この冷却システム の地上試験及び打ち上げ前の冷却作業について述べる。

2. 冷却性能試験

冷却システムの冷却性能試験¹⁾を実施した。冷却システム は横転台車上に固定し,42.5[°]傾斜させて試験を実施した。 これは,軌道上の無重量下で,ヘリウムタンク内の液体ヘリウ ムがポーラスプラグに接している状態を模擬するためであって, 42.5[°]は液体へリウムの液面(液体と気体の境界面)がちょう ど PP に触れる角度である。このほか,熱解析モデルの検証を 目的として,より安定した温度状態を作り出すために,間欠的 に発熱する ADR を意図的に停止した試験も行った。

試験結果は、ヘリウムタンクの温度は 1.16K、ヘリウムタンク への侵入熱量は 0.73mWとなった。この侵入熱量であれば、 30Lの液体ヘリウムを4.0年間保持でき、冷凍機の劣化を考慮 しても要求である3年以上を満足する。表1に、事前解析予測 と試験結果の比較を示す。各部の温度はよく一致した。ヘリウ ムタンクへの侵入熱量は僅か 0.02mW の誤差であり、精度の 高い設計ができていることを確認した。

3. 打ち上げ前冷却作業

2015年11月末に衛星は種子島宇宙センターに輸送された。 打ち上げ前の2016年2月2日から、大型ロケット組立棟で、衛 星がロケットと結合した状態で最終冷却作業を実施した。

まず,3日間かけ,液体ヘリウムを注入し,ヘリウムタンクを 常温から4.2Kまで冷却した。このあと液体ヘリウムの温度を 1.3Kまで下げるために,ヘリウムタンク内を減圧するが,減圧 すると,液体ヘリウムの蒸気圧が下がり蒸発して液量が減る。 ヘリウムタンク内をより低温の液体ヘリウムで満液にするため, ヘリウムが超流動状態になる2.17Kに近い温度で液体へリウム を衛星外部の供給源からヘリウムタンクへ転送するトップオフ 充填作業を行った。図1にトップオフ充填作業から打ち上げま でのヘリウムタンクの温度変化を示す。ヘリウムの転送作業は 3回行い,最終的に1.80Kの液体ヘリウムでヘリウムタンクを満 たすことができた。その後、打ち上げ日の悪天候による延期を 乗り越え、打ち上げ前の液体へリウム充填量は、打ち上げ後 1.3Kまで冷却することによる減少量を考慮した33L以上を上回 る35L以上とすることができた。

4. おわりに

「ASTRO-H」に搭載される軟 X 線スペクトロメータ用デュワ ーの地上試験を実施し,所期の性能を満足していることを確 認した。また,打ち上げ前に,液体ヘリウムの充填作業を行い, 予定通りに作業を実施することができた。

参考文献

1. S. Yoshida, et al., Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H, Cryogenics 74 (2016) 10-16.

	Prediction	Measurement	Error
He tank	1.3K	1.16K	-0.14K
JT shield	4.31 K	4.28K	-0.03K
IVCS	24.5 K	27.0K	2.5K
MVCS	93.9 K	102.7K	8.8K
OVCS	138.5 K	139.6K	1.1K
MS	293 K	293K	0.0K
Heat load to the He tank	0.75mW	0.73mW	-0.02mW

Table 1 Temperatures in prediction and measurement

Fig.1 Helium tank temperature profile in launch campaign

— 97 —

X 線天文衛星「ASTRO-H」搭載軟 X 線スペクトロメータ用デュワー開発 その 3 冷凍機開発

Development of a Dewar for the Soft X-ray Spectrometer on the X-ray astronomy satellite ASTRO-H(3) Cryocoolers

<u>恒松 正二</u>, 金尾 憲一, 楢崎 勝弘, 吉田 誠至, 大塚 清見(住友重機械); 満田 和久, 山崎 典子, 中川 貴雄, 佐藤 洋一, 竹井 洋, 杉田 寛之(JAXA) TSUNEMATSU Shoji, KANAO Ken'ichi, NARASAKI Katsuhiro, YOSHIDA Seiji, OTSUKA Kiyomi (SHI);

MITSUDA Kazuhisa, YAMASAKI Noriko, NAKAGAWA Takao, SATO Yoichi, TAKEI Yoh, SUGITA Hiroyuki (JAXA)

E-mail: shoji.tsunematsu@shi-g.com

1. はじめに

2016年2月17日に種子島宇宙センターからH-IIAロケット30号機で打ち上げられたX線天文衛星「ASTRO-H」に搭載された軟X線スペクトロメータ用デュワーに使用している2段スターリング冷凍機および4K-JT冷凍機に関して設計、地上での試験結果について述べる。

2. 冷凍機概要

軟X線スペクトロメータ用デュワーは、検出器を50mKまで 冷却する断熱消磁冷凍機(ADR)とのインタフェースを1.3K以 下の冷却し、かつその温度を3年以上保持するため、超流動 ヘリウムと冷凍機を用いたハイブリッドな冷却システムである。

冷凍機は、超流動ヘリウムへの侵入熱を低減する熱シー ルドを冷却するために、4 台の2 段スターリング冷凍機と1 台の4K-JT 冷凍機を使用している。

図1にデュワー搭載状態の2段スターリング冷凍機を、図 2に4K-JT 冷凍機を示す。

2 台の 2 段スターリング冷凍機は、シールドクーラー(SC)と して、4 層の熱シールド(JTS、IVCS、MVCS、および OVCS)の うち、IVCS および OVCS を冷却しており、4K-JT 冷凍機は、2 台の 2 段スターリング冷凍機を予冷機に使用して、JTS を 4K 台に冷却している。この冷却システムは、超流動へリウム枯渇 後も ADR とのインタフェースを 4K 台に冷却し、観測が継続で きるようになっており、かつ、どの冷凍機が故障した場合にも 観測が継続できるような構成が採用されている。

各冷凍機に対する要求仕様を表1に示す。

2 段スターリング冷凍機や 4K-JT 冷凍機は、2006 年に打ち上げられた赤外線天文衛星「あかり」や、2009 年に打ち上げられた JEM/SMILES に搭載された冷凍機の冷却性能及び 長寿命化に関する改良点が反映されたものである。

3. 評価試験

各冷凍機は、エンジニアリングモデル(EM)、フライトモデル(FM)に対し、(1)冷却性能試験、(2)ランダム・正弦波振動 試験、(3)衝撃試験(EMのみ)、(3)熱真空試験(EMのみ)、(4) 振動レベル測定試験、(5)寿命評価試験を実施し、目標開発 仕様を満足していることが確認された。

デュワーに搭載された FM は、各種システム試験において 性能が確認され、打ち上げられた。

4. おわりに

2 段スターリング冷凍機、および 4K-JT 冷凍機を組み込ん だ軟 X 線スペクトロメータ用デュワーは、地上試験において、 所定の性能を満足していることが確認された。射場において は、各冷凍機運用を伴う超流動へリウムの注液作業が予定通 り実施された。

参考文献

- S. Yoshida, et al., Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H, Cryogenics 74 (2016) 10-16.
- 2. K. Narasaki et al. Adv. Cryo. Eng., 49B 2004), 1785-1796

Table.1 Specifications of Cryocoolers

Item	Two-stage Stirling cooler	4K-JT cooler	
Cooling	\geq 0.2W at 20 K	\geq 40 mW at 4.5K	
Capacity	\geq 1W at 100 K	≥40111W at 4.51	
Power	< 00 W	< 0.0W	
Consumption	≥ 90 W	≥90₩	
Lifetime	≧3 years	≧3 years	
Drive	15 Hz	52Hz	
Frequency	(13.933~16.261Hz)	(50.43~53.83Hz)	

Fig.1 Two stage Stirling cooler

Fig.2 Heat exchangers and Pre-coolers of 4K-JT cooler