DI-BSCCO テープ線材の引張繰返し負荷特性の評価 Evaluation of the resistant property of DI-BSCCO tapes to tensile repetitious loading

<u>笠羽</u>一成,笠場孝一(富山大学);山田 雄一,長部 吾郎(住友電工) <u>KASABA Kazunari</u>, KASABA Koichi (Univ.Toyama); YAMADA Yuichi, OSABE Goro (SEI) E-mail: kznr0614@i.softbank.jp

1. はじめに

本研究では Bi-Sr-Ca-Cu-O(BSCCO)テープ線材に、マグ ネット導体として、実際に受けるであろう繰返し負荷が加わっ た場合の I_cの劣化挙動を調査している. 2012 年度からそのた めの実験装置の自作をはじめ、装置の改良を続け、現在はテ ープ線材に対して、繰返し数 10⁵回までの実験が可能なもの になっている. その実験の結果を報告する.

2. 供試材

本実験で使用した供試材は BSCC0 テープ線材 TYPE HT-SS である. 銀や銀合金で被覆された線材をステンレス でラミネート加工して強度を高めた線材である. 単発負 荷での許容引張応力 (I_c/I_{co} =0.95) は, 270MPa(カタログ 値)である.

3. 実験方法

パルス駆動のサーボモータを正転、反転させることで、ね じ金具を介した主軸を往復運動させる.そして測定荷重を自 作のパルス発生コントロールプログラムにフィードバックさせ、 次のサイクルのパルス量を調整する.そのようなしくみで最 大・最小荷重が約±5Nの範囲内で制御が可能になっている. その制御が維持できる最大の速度が3 cycle/sで実験を行うが、 10⁵回の実験時間は約10時間となる.これら繰り返し負荷は 液体窒素環境下で超伝導状態を維持した状態で与えている. この荷重制御での応力比は0.1としており、例えば330Nの目 標最大荷重では、33Nを最小荷重としている.そして 1,2,5,10,20…の特定の回数の除荷時で臨界電流 *Ic*を測定す る.その際、一般的な判定基準である1µV/cmの電圧発生で *Ic*を定義する.同時に、ゲージ長さ25mmの、テープ線材に 直接抱きつかせたクリップゲージ(Nyilas ゲージ)でひずみを 測定し、繰返し負荷に対する応答を測定した.

4. 試験結果

図1は繰り返し負荷に対するIcである. 300N, 330Nとも104 回までで、0.5%(約 1A)程度のわずかな減少傾向があるもの の, そこでほぼ飽和し, その後の 105 回までで, 目立った Lの 劣化は見られない.しかし 340N(267MPa)のものは,2×104ま でのデータであるが104回以降も劣化している.図2は図1の ☆のデータの I を, I 測定時の除荷ひずみに対応付けたも のである.除荷1回目ではLは、点線の負荷曲線近くにあり、 可逆的であったが,繰返し数が多くなるにつれ,若干の不可 逆性を示し,同程度のひずみで Icに違いが見られた. 2×104 回あたりで、(永久)ひずみは 0.15%で落ち着き、その後の繰り 返しで変化はなくなる. I。特性を向上させる, Bi 層の予圧縮残 留応力は,繰り返し負荷で解放・再分配されることが考えられ るが,その動きがほぼ停まったことが一因として考えられる.い くつかの試料は、105回の終了時、あるいは途中回数での試 験打ち切り時に,樹脂に埋め,縦断面が表れるようにその樹 脂ごと切断し、研磨後に縦断面像を撮影した.例として図1① △の試料のものを図3に示す.104回の負荷にも関わらず,フ ィラメント部に目立った損傷は受けていない. その一方で,補 強層と裸線の間のハンダ層に研磨時の脱落が見られる.使用 されている Sn-Ag ハンダは,繰り返し負荷で容易に双晶を起 す性質があり、幾らか脆くなっていた可能性がある.

Fig. 2 Unloading strain histories and I_c degradation

Fig. 3 SEM observations of 10^4 fatigued wire

5. 結言

HT-SS線で,10⁵回の繰り返し負荷で,*I*,/*I*_{co}=0.98を維持す るのは,最大荷重で 330N(259MPa)であった.その際 10⁴回ま でで*I*_cの劣化はほぼ収まり,繰り返しによる永久ひずみも変化 がなくなった.繰り返し負荷で解放される,Bi層の予圧縮残留 応力が,その回数までで別の平衡点に収まったことが考えら れる.一方で,補強層と裸線の間のハンダ層の疲労による損 傷にも気を配る必要がある.

二層ツイスト高温超電導ケーブルの部分的断熱による交流損失の熱的測定 Measurement of AC loss in two layered twisted HTS cable using a calorimetric method

<u>原 祐輔</u>, 東條 竜児, 小川 純, 福井 聡, 岡 徹雄, 佐藤 孝雄(新潟大) <u>HARA Yusuke</u>, TOJO Ryuji OGAWA Jun, FUKUI Satoshi, OKA Tetsuo, SATO Takao (Niigata University) E-mail: ogawa@eng.niigata-u.ac.jp

1. はじめに

高温超伝導ケーブル開発において交流通電時に生じる交流損失をいかに低減するかが、ケーブルの送電能力、ランニングコスト、安定性に直結するため最大の問題となる。このため、高温超伝導ケーブルの線材特性と配置が交流通電損失に及ぼす影響を評価する事は重要となる。高温超電導ケーブルの交流損失評価において四端子法による電気的測定法では、ケーブル軸方向に生じる縦磁界により、超伝導ケーブルの各層に生じる交流損失を正確に評価することができないことが報告されている。

そこで本研究では二層ツイスト高温超伝導ケーブルの各層 に断熱処理を施し、交流損失による温度上昇から損失を測定 する熱的測定法により各層における損失を測定した。具体的 には内層、外層の通電方向を変えた時の交流通電損失およ び、外層、内層の電流バランスを変化させたときの交流通電 損失を測定し、その結果を報告する。

2. 二層ツイスト高温超電導ケーブルモデルと実験方法

図1に二層ツイスト高温超電導ケーブルの概略図を示す。 内層直径20mmのGFRPの棒に内層9本、外層直径26.4mm として12本のBi2223/Ag線材をそれぞれ独立させて巻き付け た。使用した Bi2223/Ag線材の臨界電流値は測定区間で 74Aのものを使用した。ツイスト角度を45度とし、内層、外層 の線材のツイスト方向を逆方向にし、線材間距離を1mmとし た。測定する高温超電導線材表面に熱電対を取り付け、その 表面を発砲スチロールで断熱させた構造とし実験をおこなっ た。

内層、外層のそれぞれの線は直列接続で接続されており、 それぞれの層内では同一の電流が流れている。電流の方向 を変えた実験では、内外層の接続方法を変えることにより、電 流の方向を反転させた。また、内外層の電流のバランスを変 える実験では電源を2つ使用し、それぞれの電流が同位相と なるように位相合わせを行い、通電を行った。

図1 二層ツイスト高温超電導ケーブルの形状

3. 実験結果

図2に、内層、外層それぞれ同じ方向(Parallel)に通電したときの交流損失と逆方向(Anti parallel)に通電した時の交流 損失を示す。縦軸は線材一本当たりの交流損失を示しており、 横軸は通電電流を示している。また、比較のために内層外層 の臨界電流値より導出した Norris の楕円モデルを用いて導 出した理論値を示している。電流の方向による影響について 比較すると、逆方向に通電した時のほうが同方向に通電した 時にくらべ交流損失は小さくなる結果となった。

図3に同方向通電時に内外層の電流バランスを変えた時 の交流損失を示す。横軸は1本あたりに通電している電流値 の内外層の比を示しており、縦軸は1本当たりの交流損失を 示している。図3より内層、外層の通電電流に偏りが出るほど 交流損失は大きくなる結果となった。

参考文献

1. J. Ogawa, et al.: IEEE Transactions on Applied Superconductivity, vol.22, No.3(2012) p.4704804

及ぼす影響

図3 電流バランスを変化させた時の交流通電損失の影響

— 54 —

鉄心内に挿入された高温超伝導集合導体の交流損失特性の実験的評価 Experimental investigation of AC loss characteristics of stacked HTS tapes in an iron core

多田 寛明, 桜井 達哉, 吉井 佑斗, 佐野 佑樹, 小川 純, 福井 聡, 岡徹雄, 佐藤 孝雄(新潟大学)

TADA Hiroaki, SAKURAI Tatsuya, YOSHII Yuuto, SANO Yuuki, OGAWA Jun, FUKUI Satoshi, OKA Tetsuo, SATO Takao

(Niigata University)

E-mail: ogawa@eng.niigata-u.ac.jp

1. はじめに

鉄心内で高温超伝導線材単線を交流応用する場合、鉄心 外に比べ交流損失が増大することが報告されている。また, モータ中などの条件ではレーストラックコイルの直線部分を固 定子の中に差し込んだ状態で使用していることから、積層し た条件における交流損失特性の評価が重要となる。このため、 本研究では積層した高温超伝導線材を鉄心内に挿入した条 件において、それぞれの線材の損失がどのようにふるまうかを 調査した。測定方法として、磁性体が隣接する条件では、四 端子法のような電気的測定は正確に評価することができない ため、交流損失により生じる熱を基に測定を行う熱的測定法 により評価を行った。また、漏れ磁界により生じる損失特性に ついても同様の方法で測定を行った。

2. 実験方法

図1に本実験で使用した実験装置の概略図を示す.変 圧器用のカットコアを使用し、片側に励磁用の18ターン のコイルを配置し、片側に積層した超伝導線材を挿入す るための溝を形成した.溝の形状は深さを10mm とし、 幅は積層本数ごとに w=3,5,7mm を用意し、それぞれに 1,3,5 本の線材を挿入し実験を行った.超伝導線材は臨界 電流値が約74Aのものを選定し使用した。この条件にお いて線材に交流通電を行い通電損失を測定し、さらに励 磁用コイルに通電した時に生じる磁化損失と全損失の測 定を行った.熱的測定法で測定を行うため、線材表面に 熱電対を配置し線材間を発泡スチロールで断熱し測定を 行った.

3. 実験結果と考察

図2と図3に5本積層した条件における各線材に生じる 通電損失と磁化損失をそれぞれ示す.中央の線材を中心に

対称であると考えられることから,図1に示すように鉄心に近い線材をNo.1とし,No.1~3までの線材の交流損失特性を評価した.また図2の通電損失は比較のため鉄心外において同様の条件で測定を行った.

図2より,鉄心外では線材の位置によらず損失はほぼ同じであるが、鉄心内に挿入すると各線材の損失は大きくなっている.鉄心に挿入した場合の通電損失は最外の線であるNo.1の損失が最も大きくなり、内側になるにつれて損失の増大幅が小さくなっていることがわかる.また,最外の線は電流に対する損失の傾きも鉄心外では3乗であったものが,2乗になっている.

図3の磁化損失のグラフは、図2同様にNo.1の線材の損 失が中央の線材に比べ大きくなっており、内側の線材に比べ て生じる損失は著しく大きいことが示されている.これは鉄心 から印加されている磁界は漏れ磁界になるため、均一磁界で はなく、さらに積層することによるシールド効果により内側の線 材の損失が著しく低下したものと考えられる.

参考文献

1. J. Ogawa,et al.: IEEE Transactions on Applied Superconductivity, vol.24, No.3(2012) p.6600204

図3 5本積層の磁化損失の内部分布

— 55 —

鞍型ピックアップコイル法による REBCO 超伝導テープ線材の 磁化緩和特性の評価 Observation of magnetization relaxation of REBCO superconducting tapes by saddle-shaped pickup coil

上野 達人, 岩熊 成卓(九州大学); 和泉 輝郎, 塩原 融(SRL) <u>UENO Tatsuhito</u>, IWAKUMA Masataka (Kyushu Univ.); IZUMI Teruo, SHIOHARA Yuh (ISTEC) Email:ueno@sc.kyushu-u.ac.jp

1. はじめに

REBCO 超伝導テープ線材で作成した超伝導コイルでは、 半径方向の磁界成分により遮蔽電流が誘起され、これが時間とともに変化することにより、磁界の空間・時間的に均 一性が損なわれる。そのため、MRI や NMR などの1時間あ たり 1ppm 以下の磁界の均一性を必要とする機器に応用す るためには、REBCO 超伝導テープ線材の磁化緩和特性を評 価することが重要である。今回、鞍型ピックアップコイル を用いて、REBCO 超伝導テープ線材における磁化緩和の積 層枚数依存性を評価したので報告する。

2. 研究内容

ピックアップコイルは、磁界掃引停止直後から線材の磁 化緩和の連続測定ができ、また鞍型ピックアップコイルは さらに試料線材を複数枚積層した場合でも較正無しで定 量的評価が可能である。今回、EuBCO 超伝導テープ線材を 1,3,6枚と積層し、温度を 30K とし、直流バイアス磁界を 0T、0.5T 印加して、外部磁界掃引停止後の磁化の変化を 観測した。Table.1 に EuBCO 超伝導テープ線材の諸元を示 す。

3. 実験結果及び考察

Fig.1、Fig.2に、バイアス磁界が 0T、0.5T の場合の 磁化緩和の観測結果を示す。積層枚数が多いほど磁化緩和 が緩やかになっていることがわかる。これは、磁化緩和速 度すなわち遮蔽電流の減衰時定数は、磁束クリープや磁束 フローによる線材等価抵抗[1]と遮蔽電流ループのインダ クタンスで決定されるが、線材が積層されることで等価的 にインダクタンスが大きくなったためと考えられる。

実際の超伝導マグネットでは線材は多数枚積層されて おり、遮蔽電流の減衰時定数を考察するに際し、この影響 を考慮しなければならないことがわかる。

参考文献

 [1] 松下照男"量子化磁束のダイナミックス",応用物理 Vol59, no.5(1990)p596-600

Table. I Characteristics of EuBCO superconducting tapes			
Width	10mm		
Stabilizer	Ag(4µm)		
Superconductor	EuBCO+BHO(1.52µm)		
Cap and buffer layers	CeO ₂ (0.62µm)		
	LMO(8nm)		
	MgO(5nm)		
	$Y_2O_5(14nm)$		
	Gd ₂ Zr ₂ O ₇ (0.8µm)		
Substrate	Hastelloy(100µm)		

Fig.1 Observed magnetization relaxation in stacked EuBCO tapes at 0T and 30K.

Fig.2 Observed magnetization relaxation in stacked EuBCO tapes at 0.5T and 30K

ex situ 法 MgB₂線材の臨界電流密度特性に及ぼす充填粉への還元剤添加効果 Effect of the addition of reducing compounds to the filling powder on the critical current density properties of ex situ processed MgB, tapes

<u>藤井 宏樹</u>, 小澤 清, 北口 仁(NIMS) <u>FUJII Hiroki</u>, OZAWA Kiyoshi, KITAGUCHI Hitoshi (NIMS) E-mail: fujii.hiroki@nims.go.jp

1. 序

MgB₂線材のJ特性を改善するには、結晶粒間結合の強化 が重要である。とりわけ、ex situ 法においては、in situ 法に比 べて弱結合が起こりやすく、MgB₂粒周囲に付着する MgO 層 が、その要因であると考えられる。MgO 層の除去には、酸性 溶液処理による溶解除去や、ミリング処理による機械的除去 が挙げられるが、今回 MgB₂粉に還元剤を添加して MgO の 除去を試みた。

2. 実験

市販 MgB₂粉(Alfa Aesar)に対し、少量の Ca(純度 99.99%)、 CaC₂(80%)及び CaH₂(95%)を、それぞれ 100: x (x = 0, 1, 3, 6, 10)のモル比に混合した。これらの混合粉末や、これらを粉 砕処理した粉末を成型後、Ar 雰囲気下 920°C で加熱処理し た。Ca については、粉砕処理粉末試料のみ作製した。一方、 これらの粉末を充填粉として、PIT 法で Fe シース線材を作製 し、Ar ガス気流中で加熱処理を施して、その特性を調べた。

3. 結果と考察

3-1. 粉末試料

XRD から、試薬 CaC₂には 10mol%弱の CaO が不純物とし て存在していた。一方、CaH₂には同定できない非常に小さい XRD ピークが幾つか見られた。Fig.1 にx = 10の CaC₂、CaH₂ 添加焼成試料と、市販 MgB₂粉末の XRD 図を示す。いずれ の添加試料においても、CaB₆と Mg の生成が認められ、その 量は x の増加と共に増大したが、CaC₂ 添加試料では、CaH₂ 添加試料に比べて、それらの生成量は少量であった。また、 添加により、MgO に対する MgB₂の相対量 MgB₂/MgO は、 6.2 から 9.3–9.8 に増加した。一方、添加による MgB₂の格子 定数の変化は認められなかった。これらのことから、Ca化合物 は MgO を還元する一方、MgB₂とも反応して CaB₆と Mg を生 成し、Ca は Mg を置換しないものと考えられる。

なお、これらの混合粉砕粉末を加熱処理したものについて も、同様の生成物が認められたが、 CaC_2 添加試料のみ、 MgB_2 の a 軸長の縮小が認められた。この格子定数の変化は CaC_2 からの炭素置換によるものと考えられ、そのa 軸長から見 積もった炭素置換量 p は、組成式 $MgB_{2-p}C_p$ において、x = 6では p = 0.02-0.03であった。粉砕処理粉末においてのみ置 換反応が認められたのは、粉砕処理によって CaC_2 が活性化 されたものと考えられる。

3-2. 線材試料

Fig.2に、CaC₂及びCaH₂を添加した充填粉を用いて作製した線材試料の4.2Kでの J_c -B特性を示す。混合粉末使用の線材試料の特性は、CaH₂を少量添加すると改善されたが、 $x \ge 6$ では却って劣化した。一方、CaC₂添加では、添加量に拘わらず劣化した。CaH₂添加による J_c 特性の改善は、MgOの還元による結晶粒間結合の改善によるものであり、CaC₂添加による劣化は、弱結合によるものと考えられる。

粉砕処理した粉末を使用して作製した線材の J_c-B 特性は 当日報告する。

Fig. 1. XRD patterns of MgB₂ powders with the additions of (a) CaC₂ and (b) CaH₂ with x = 10, and (c) pure MgB₂ powder. XRD peaks assigned to MgB₂ are indexed.

Fig. 2. J_c -*B* curves for tapes using filling powders of MgB₂ with the additions of CaC₂ and CaH₂ with molar ratios of MgB₂ : CaC₂(CaH₂) = 100 : x (x = 0, 1, 3, 6 and 10). The measurements were performed at 4.2K.

スエージングを用いて線材加工した MgB,単芯線材の作製とその超伝導特性

Microstructure and superconducting properties of MgB₂ single-filament wire cold worked by swaging

齊藤 祐亮, 村上 雅人(芝浦工大), 葉 術軍, 熊倉 浩明(NIMS)

SAITO Yusuke, MURAKAMI Masato (Shibaura Institute of Technology), YE Shujun, KUMAKURA Hiroaki (NIMS)

E-Mail:SAITO.Yusuke@nims.go.jp

1.はじめに

 MgB_2 超伝導体は、39Kの T_c を有することから液体水素 温度20K 冷却での産業応用が期待されている。また、高 温超伝導体と異なり、弱結合の問題がほぼ無いなどの利点 を有する。一般的に、MgB2超伝導線材の作製方法として、 粉末を充填後に加工、熱処理を行う Powder In Tube(PIT) 法が用いられることが多い。しかし PIT 法では MgB₂の充 填率が低く、線材加工法の選択が重要であると考えられる。 そこで本研究では、スエージングを用いて線材を作製し、 これまでの溝ロール圧延+ダイス線引きと比較した。

2.実験方法

線材作製は、In-situ PIT 法を用いた。原料粉末は Mg(99.5%, <45µm)、アモルファス B(98%, <250nm)、を用いて、モル 比 Mg:B=1:2 とし、大気下で秤量後、乳鉢を用いて 30 分 間混合した。また添加元素として SiC(20nm)を使用した。 粉末を充填するシースには純鉄(99.5%,外径/内 径:6/3.5mm)を用いた。加工は (a)スエージング、(b)スエー ジング+ダイス線引き、(c)溝ロール圧延+ダイス線引き(以 下(a),(b),(c)と略記)で行った。中間焼鈍なしで 1.0mm 径の 単芯線材を作製出来た。熱処理は Ar フロー中で 600/650/700℃で1時間行った

作製した線材の組織を光学顕微鏡(OM)およびSEMで観 察した。また構成相の同定を X 線回折(XRD)で行った。 充 填度の評価として、熱処理後の MgB2 コアの硬さをビッカース硬さ試験器により調べた。Jcを4端子抵抗法により測 定した。

3.結果と考察

各加工における線材長手方向の断面図を Fig.1 に示し、 MgB2コアにおけるビッカース硬さをFig.2 に示す。また 4.2K における無添加線材(600℃)、SiC 添加線材(700℃)の J_c-B特性を Fig.3,4 に示す。Fig.1 より(a)は(b)(c)と比べフィ ラメント形状が良好であり、また Fig.2 より(a)で線材を作 製した場合、 H_v が(b)および(c)に比べ $1.5 \sim 2.5$ 倍高い値を 示した。これは(a)により、MgB2の充填度が増大する事を 示唆している。(a)で作製した線材は、無添加、SiC 添加と もに(b)(c)に比べてかなり高いJcの値を示した

また無添加線材においては、600℃で熱処理を行った線 材が最も高い値を示した。これは650/700℃と比べ比較的 MgB₂の粒径が小さいためと考えられる。一方でSiCを 10mol%添加した線材では熱処理温度が高いほど特性が向 上する傾向がみられた。

Fig.1 Longitudinal cross-sectional OM images of single-filament wires

Fig.3 J_c-B properties of single-filament wires

Fig.4 J_c-B properties of 10mol%SiC added single-filament wires

拡散法を用いた MgB₂線材の組織と超電導特性

Superconductive properties and structure of MgB2 wires prepared by diffusion process

大内 皓,山田 豊(東海大);松本 明善,熊倉 浩明(NIMS)

OHUCHI Hiroshi, YAMADA Yutaka (Tokai University); MATSUMOTO Akiyoshi, KUMAKURA Hiroaki (NIMS)

ohuchi.y.s.c.l@gmail.com

1. はじめに

本研究室ではこれまでMg管内にB粉末を配置する外部拡 散法を用いた MgB₂線材を作製し、超電導特性と組織との関 係について報告してきた。この外部拡散法で作製したMgB₂コ アは化学量論比ではBrichとなる傾向があり、これを改善する ことで更なる Jc 値が向上すると考えられる。そこで、本研究で は線材の中心に Mg 棒、外側に Mg 管を配置し、その間に B 粉末を充填することで B 粉末と Mg との接触面積を従来の外 部拡散法より増やし、内側及び外側の両方向から Mg を拡散 させて作製した MgB₂線材の組織と超電導特性について報告 する。

2. 実験方法

Fig. 1 に Mg 管と Mg 棒を用いた拡散法 MgB。線材作製プロセスを示す。外径/内径:13/8 mm ϕ の純鉄管に、外径/内径:8/5.8 mm ϕ の Mg 管を挿入し、直径 3 mm ϕ の Mg 棒を中心に配置後、5 mol‰の SiC 粉末を添加したアモルファス B 粉末を充填した。その後、冷間で溝ロール、線引加工を行い、1.0~0.6 mm ϕ に伸線した。630°C×5h、Ar 雰囲気中で熱処理を行った。作製した試料の光学顕微鏡による横断面組織観察および SEM による破断面観察を行った。X線回折を用いてMgB₂コアの生成状況の確認を行った。4.2 K における臨界電流 (Ic) の磁場依存性については物質・材料研究機構(NIMS)にて測定した。

3. 実験結果及び考察

Fig. 2 に線径 1.0 mm ϕ の試料の熱処理前後の横断面写 真を示す。Fig. 2(a)の熱処理前の断面写真よれば、Mg 管は ほぼ均等に、また、Mg 棒も偏芯することなく加工されたことが わかる。なお、Mg 管を含む線材内の形状が角型であるのは、 溝ロール加工の影響が残っているためである。Fig. 2(b)の熱 処理後の断面写真では MgB₂コアがほぼ B 粉末の充填部に 生成していることが見られる。この MgB₂コアの外周および内 周の両側で Mg の反応に伴う Gap が形成されているが、Gap 幅は 30~50 μ m 程度となり、かつ、多くの残留 Mg が見られる。 この傾向は SEM 観察でも同様に見られた。これは、Mg の固 体拡散(630°C)における反応距離の限界である可能性が考え られる。線材縦断面の X 線回折によれば、MgB₂の生成ととも に添加した SiC 粉末と Mg が反応したと思われる Mg₂Si および 残留 Mg、Fe シースのピークが得られた。

Fig. 3 に線径 1.0~0.6 mm ϕ の MgB₂線材の 4.2 K におけ る臨界電流密度(Jc)の磁場依存性を示す。4.2 K、10 T にお ける Ic 値は、1.0 mm ϕ の試料では 23.5 A、0.6 mm ϕ の試料 では 10.5 A となり、Jc 値に換算すると 1.0 mm ϕ の試料が 235 A/mm²、0.6 mm ϕ の試料では 309 A/mm²となった。また、 6 T における Ic 値は、1.0 mm ϕ の試料では 139 A、0.6 mm ϕ の試料では 60 A となり、Jc 値に換算すると 1.0 mm ϕ の試料 が 1390 A/mm²、0.6 mm ϕ の試料では、1765 A/mm²と、各磁 場下において線径を小さくした試料の Jc 値が勝った。これは 伸線されることにより Mg と B の相対的な接触面積が増大し、 より反応が促されたためだと考えられる。

Fig. 1 Preparation procedure of MgB_2 wires by bidirectional diffusion process using Mg tube and Mg Rod.

Fig. 2 Macrostructure of the transverse cross-sections in MgB₂ wires of 1.0 mm in diameter.
(a) as drawn, (b) Heat Treated

Fig. 3 Magnetic field dependence of the Jc at 4.2 K for the MgB_2 wires heat-treated at 630 °C for 5 h.

— 59 —

磁性シース材を有する MgB₂線材における局所臨界電流分布の非破壊評価 Nondestructive Characterization of Local Critical Current Distribution in MgB₂ Wire with Magnetic Sheath Material

<u>鏞 海志</u>,東川 甲平,井上 昌睦(九大); 葉 術軍, 松本 明善, 熊倉 浩明(NIMS); 木須 隆暢(九大) <u>TATARA Hiroshi</u>, HIGASHIKAWA Kohei, INOUE Masayoshi (Kyusyu Univ.); YE Shujun, MATSUMOTO Akiyoshi, KUMAKURA Hiroaki (NIMS); KISS Takanobu (Kyusyu Univ.); E-mail: h.tatara@super.ees.kyushu-u.ac.jp

1. はじめに

MgB₂線材のさらなる特性の向上には,特性低下部の位置を明らかにした上で,組織観察を行うことによる特性制限因子の解明が求められる。我々はこれまでに,磁気顕微法により,MgB₂線材の局所臨界電流分布を評価できることを報告してきたが,鉄のような強磁性体がシース材に用いられている場合には,フィラメントからの信号を検出するために,試料を研磨する必要があった^[1]。そこで本研究では,磁性体の飽和領域の特性を利用することで,研磨などを行わずに非破壊に評価できる手法を開発した。

2. 方法

評価対象とした試料は、内部 Mg 拡散法によって作製された鉄シースの単芯 MgB2線材であり^[2]、セットアップした測定 試料の写真を Fig. 1 に示す。本試料に対して、鉄の飽和磁束 密度(約2 T)を超える外部磁界を印加し、走査型ホール素子 顕微鏡(SHPM)によって線材直上の磁界分布を取得した。

3. 結果·考察

線材を10 K に冷却した後に,3 T の外部磁界を印加した際 の磁界分布を Fig. 2 に示す。(a)に減磁時,(b)に増磁時の結 果を示しているが,特に増磁時には超伝導フィラメントが外部 磁界を遮蔽することが予測されるが,線材としては鉄シースの 影響により磁束を集めてしまっている。そこで, 超伝導フィラメ ントからの信号を取り出すことを目的とし、同フィラメントの磁化 の正負が反対となる(a)の減磁時から(b)の増磁時の磁界分布 を差し引いた結果, (c)にみられるような情報を取り出すことが できた。同様のことを臨界温度よりも高い40Kで行った結果, 差が殆ど見られなかった。このことより,鉄の飽和領域で磁界 分布の差分を取ることにより,鉄シースによる信号が打ち消さ れ,超伝導フィラメントの磁化由来の信号が得られたと考えら れる。また,得られた磁界分布の差分について,有限要素法 による数値解析との比較検討を行い,臨界電流(Ic)を導出し た結果を Fig. 3 に示す。10 mm 長程度の試料中で, 局所 Ic に 5 割程度も差があることがわかった。近い温度において四 端子法による値と比較したものを Fig. 4 に示す。局所的に最 小となる Ic の値が四端子法からの予測とよく一致していること がわかる。以上から,線材の特性は局所低特性部によって制 限されており,最高レベルの本試料であっても,均一性の向 上により、いまだ特性向上の可能性が大きく残されていること が示唆された。このように、一般に磁性シース材用いられる MgB,線材に関して、研磨によるダメージを心配せずに、非破 壊で局所臨界電流分布を評価することが可能となった。また、 四端子法では測定困難な高 I。 値条件化の特性まで見積もる ことが可能であるとともに,最終的には製品の非破壊品質管 理の基盤技術になることが期待される。

参考文献

[1] K. Higashikawa et al.: Physica C 504 (2014) 62.

[2] S.J. Ye et al.: Supercond. Sci. Technol. 27 (2014) 085012.

謝辞

本研究は JST 先端的低炭素化技術開発(ALCA)「未来の 水素利用社会を支える低コスト高性能 MgB₂線材の開発」に よる助成を得て行ったものである。

Fig. 1. Photograph of the sample set on the SHPM: iron-sheathed mono-core MgB_2 wire fabricated by the IMD process.

Fig. 2. Magnetic micrograph measured (a) at 10 K with external magnetic field history of $4 \rightarrow 3$ T, (b) at 10 K with 2 $\rightarrow 3$ T, (c) the difference between (a) and (b) at 10 K, and (d) the difference at 40 K with the same magnetic field history.

Fig. 3. Longitudinal distribution of critical current estimated from the signal shown in Fig. 2 (c) with the aid of FEM.

Fig. 4. Comparison of engineering critical current densities between the SHPM and four-probe method.

先進超電導 SMES コイル用 MgB₂ 導体の常電導伝播測定 Measurement of NZPV in MgB₂ Wire for ASPCS SMES Coil

<u>安藤 憲之介</u>, 葛 雅志, 高尾 智明, 谷貝 剛(上智大);新冨 孝和, 槙田 康博(KEK);濱島 高太郎, 津田 理, 宮城 大輔(東北大);花田 一磨(八戸工大);岩城 勝也(岩谷産業);駒込 敏弘(前川製作所)

ANDO Kennosuke, KATSURA Masashi, TAKAO Tomoaki, YAGAI Tsuyoshi (Sophia Univ.); SHINTOMI Takakazu,

MAKIDA Yasuhiro (KEK); HAMAJIMA Takataro, TSUDA Makoto, MIYAGI Daisuke (Tohoku Univ.);

HANADA Kazuma (HIT Univ.); IWAKI Katsuya (Iwatani); KOMAGOME Toshihiro (Mayekawa)

E-mail: anken3369april@gmail.com

1. はじめに

風力や太陽光発電等の再生可能エネルギーを有効利用 するためのシステムとして、SMES、燃料電池、電気分解装置 から構成される先進超電導電力変換システム(ASPCS: Advanced Superconducting Power Conditioning System)を提 案している。SMES の冷却には水素ステーションの液体水素 の冷熱を利用し、SMES コイルの線材としては臨界温度が 39 K である MgB₂の使用を検討している。本研究では MgB₂コイ ルのクエンチ保護の観点から重要なパラメータとなる、MgB₂ 線材の常電導伝播速度を測定した。

2. 試験方法

試料は Hyper Tech 社の 19 本フィラメントとモネルシースで 構成された 0.83 mm 径の丸形線である。Fig. 1 のように GFRP に溝加工を施して 120 mm 長の試料ホルダーとし、その両端 は銅電極にはんだ付けされている。試料はこのホルダーを介 して伝導冷却されている。磁場は印加されていない。

試験手順は、まず試料の *Ic* を測定し、次に測定した *Ic* の 50、60、70%を通電電流として、線材に貼り付けたヒーター 加熱により常電導転移させて伝播速度を算出した。ヒーター にはベース幅 3.7 mm、ベース長 6 mm の 120 Ω 歪ゲージ (kyowa KFL-2-120-C1-11)を 2 枚直列に使用し、加熱を行 った。

入熱量は歪ゲージへの通電電流と抵抗値により算出した。 伝播速度は、30 mm 間隔で配置された電圧 g_{yy} プ(V_{hz})が 1 mV を超えた時間から算出した。本試験では試料の通電電流、 試料温度、ヒーターの入熱量をパラメータとした。

3. 試験結果

測定した Ic は試料温度が 30、33 K のときにそれぞれ、 80、120 A である。常電導伝播速度の測定結果を、横軸を試 料への通電割合としたものを Fig. 2、横軸を入熱エネルギーと したものを Fig. 3 に示す。Fig. 2 より、試料への通電電流が大 きくなるにつれて伝播速度の値は速くなっている。また、試料 温度が低いとき(30 K)の伝播速度が、高いとき(33 K)よりも速 い値となった。この原因として、温度が低いときは通電電流が 大きく、ジュール損失が大きくなったことが考えられる。逆に Ic に対する通電電流値の比率では伝播速度は、一定にならな いことが示された。Fig. 3 より、30、33 K のときにいずれも、通 電電流が小さくなるにつれて、常電導転移を引き起こす入熱 エネルギーは大きくなっている。

4. まとめ

ASPCS で用いる SMES コイルのクエンチ検出及び保護の ためにMgB2線材の常電導伝播速度の測定を行った。試料へ の通電電流が大きいと伝播速度の値も大きくなり、常伝導転 移を引き起こす入熱エネルギーは小さくなった。今後の測定 では MgB2線材を使用したコイルを作成し、層間での伝播速 度の測定を行い、コイル保護に活用できる基礎データの取得 を検討している。

謝辞

本研究は、JST 先端的低炭素化技術開発事業(ALCA)の 助成を受け、実施したものである。

Fig. 1. Schematic view of sample

Fig. 2. Normal zone propagation velocity (Current)

リング状バルク超電導体における空間磁東密度分布の温度依存性評価 Evaluation of temperature dependence of magnetic field distributions in ring-shaped superconducting bulk

石原 篤, 赤坂 友幸, 福本 祐介, 富田 優(鉄道総研); 禹 泰城, 関野 正樹, 大崎 博之(東大) ISHIHARA Atsushi, AKASAKA Tomoyuki, FUKUMOTO Yusuke, TOMITA Masaru (RTRI); WOO Taeseong, SEKINO Masaki, OHSAKI Hiroyuki (Univ. of Tokyo) E-mail: ai@rtri.or.jp

1. はじめに

RE 系高温超電導バルク材は、液体窒素温度(77 K)で 高磁場まで高い臨界電流密度を有するため、コンパクト で強い磁場発生が実現できる。本研究ではリング状に加 工した高温超電導バルク体[1]を用いてマグネットを構成 し、その磁場特性について評価を行った。

2. 実験方法

RE 系高温超電導バルク体(Ø80 mm, 20 mm')にリング状の 加工を行い、さらに機械強度、熱安定性を向上させるために、 金属リング補強、ならびに樹脂含浸補強を行った。このリング 状バルク超電導体を複数用い、マグネットを構成し、超電導 マグネットにより最大 8 T の外部磁場を印加し、冷凍機冷却、 もしくは液体窒素浸漬冷却で磁場中着磁を行い、極低温ホ ール素子で捕捉磁場分布を計測した。

3. 結果

リング状バルク体を2層積層した際の、バルクのギャップ幅 がリング中心磁場値に与える影響の計算結果をFig.1に示す が、ギャップが大きいほど磁場値は下がり、15mmのギャップ 幅で55%に低下することが分かる。また、バルクのギャップ幅 がリング中心の磁場均一性に与える影響を計算した結果を Fig.2に示すが、半径20mm球内において磁場の差異を10% 以内にするにはギャップ幅を13~17mmに設計する必要があ ることが分かる。

リング状バルク体を2層重ね、冷凍機により冷却し、捕捉磁場の高さ依存性を評価した結果をFig.3に示すが、低温で冷却するほど相対的に磁場値が上昇することが確認できた。

4. 結論

冷凍機冷却により、リング状バルク体の中心磁場値の評価 を行った。今後はさらなる磁場特性の改善のために、バルク 体を積層し均一性の評価を行うとともに、シムコイルによる補 正を行う。

5. 謝辞

本研究は JSPS 科学研究費助成事業(24300185)の助成 を受けて実施したものである。

参考文献

 富田優 ほか,第80回低温工学・超電導学会 講演概要 集 p.168(2009).

Fig.1 The central trapped field of the two bulk annuli controlled gap width

Fig.2 The trapped field distribution of the two bulk annuli controlled gap width

Fig.3 Height directional distributions of trapped magnetic field of the double layer bulk superconductor annuli (gap=0).

多種形状 MgB₂ 超電導バルク磁石の空間磁東密度分布評価 Evaluation of magnetic field distribution of the various shape MgB₂ superconducting bulk magnets

<u>赤坂 友幸</u>, 石原 篤, 富田 優(鉄道総研);山本 明保, 岸尾 光二(東大) <u>AKASAKA Tomoyuki</u>, ISHIHARA Atsushi, TOMITA Masaru (Railway Technical Research Institute); YAMAMOTO Akiyasu, KISHIO Kohji (The University of Tokyo) E-mail: akasaka@rtri.or.jp

1. はじめに

MgB₂は、金属系超電導体最高の約40 K の T_cをもち[1]、 冷凍機冷却による超電導磁石などへの応用が期待される。さ らにMgB₂は異方性が低く、比較的長いコヒーレンス長を持つ ことから、無配向の多結晶体においても粒間の弱結合の問題 がなく、優れた臨界電流特性を示し[2]、試料全体で均一な超 電導特性[3]を示すことが期待される。すなわち、MgB₂は超 電導バルク磁石として NMR 等の計測機器への応用に実用 上有利であると考えられる。

これまで我々は、均質性の優れた、大型 MgB₂ バルク体の 開発を行ってきた[4]。本研究では、計測機器等への応用ポ テンシャルを明らかにするために、多種形状に加工した MgB₂ 超電導バルク磁石の空間磁束密度分布の評価を行った。

2. 実験方法

Mg粉末、B粉末を混合し、プレスにより、直径 30-60 mm¢、 厚さ10 mmの円盤状に成型し、Ar 雰囲気下で 850°C,3hの 熱処理を行い MgB2 バルク体を作製し、得られたバルク体試 料に対し、切り出しなどの機械加工を施した。作製したバルク 体試料を冷凍機で20 Kまで冷却し、超電導マグネットを用い て磁場中冷却により5 T の磁場下で着磁を行った。バルク体 の捕捉磁場特性に関してはバルク体表面に配置したホール 素子と、走査型ホールプローブを用いて空間磁束密度評価 を行った。なお、試料温度はバルク体底面の温度とした。

3. 結果と考察

外径 60 mm¢, 内径 40 mm¢, 厚さ10 mmのリング状 MgB₂ バルク体試料を着磁後、ホールプローブにより磁場測定を行った。バルク体表面(z = 0)から高さ2 mm 位置(z = 2 mm)での 捕捉磁場の径方向依存性を Fig.1 に示す。また、1 辺 10 mm, 厚さ10 mmの三角柱 MgB₂バルク体試料の捕捉磁場分布を Fig.2 示すが、それぞれ形状に由来する空間磁束密度分布を 示すことが分かった。当日は、さらに別の形状の MgB₂バルク の磁束密度分布と合わせて、形状効果が磁場密度分布へ与 える影響について議論する。

4. 結論

MgB₂ バルク体を作製し、機械加工を施した結果、クラック 等はみられず、また試料形状に由来する空間磁束密度分布 が得られた。すなわち、多結晶 MgB₂ バルク焼結体は、様々 な任意形状への後加工が簡便に施せることが明らかになり、 機器応用に有望であることが示唆された。

 $\label{eq:Fig.1} \begin{array}{ll} \mbox{Radial directional distributions of trapped magnetic} \\ \mbox{field of a } MgB_2 \mbox{ bulk magnet annuli.} \end{array}$

Fig.2 Trapped magnetic field distribution of a MgB₂ bulk magnet triangular prism.

謝辞

本研究はJSPS科学研究費補助金(23246110)の助成を受けて実施したものである。

参考文献

- [1] J. Nagamatsu et al., Nature 410, 63 (2001).
- [2] D. C. Larbalestier et al., Nature 410, 186 (2001).
- [3] 山本明保 ほか,応用物理 79,48 (2010).
- [4] 例えば、富田優 ほか,第 83 回低温工学・超電導学会 講演概要集 p.86(2010).

Co, Pドープ Ba122 多結晶バルク体の微細組織と超伝導特性

Microstructure and superconducting properties of Co- and P-doped Ba122 polycrystalline bulks

<u>辻岳 千里,</u> 山本 明保, 松本和也, 林 雄二郎, 荻野 拓, 下山 淳一, 岸尾 光二 (東大)

TSUJITAKE Senri, YAMAMOTO Akiyasu, MATSUMOTO Kazuya, HAYASHI Yujiro, OGINO Hiraku, SHIMOYAMA Jun-ichi,

KISHIO Kohji (The University of Tokyo)

E-mail: yamamoto@appchem.t.u-tokyo.ac.jp

1. はじめに

2008年に発見された鉄系超伝導体^[1]は、高い *T*_c と*H*_{c2}を持ち、その一種である*AE*Fe₂As₂[122 系]は化 学的に比較的安定で電磁的異方性が小さく、母物 質中の全元素が置換可能な化学組成に柔軟な系で ある。また、置換サイトごとに超伝導発現機構が異な る。一方、鉄系超伝導体の多結晶体では本質的弱 結合、及び構造欠陥によって、結晶粒内を流れる臨 界電流密度(*J*_c^{local})と比較して試料全体を流れる臨界 電流密度(*J*_c^{local})と比較して試料全体を流れる臨界 電流密度(*J*_c^{global})が抑制される^[2]。本研究では BaFe₂(As,P)₂, Ba(Fe,Co)₂As₂多結晶体を研究対象と し、熱処理条件およびドープ量を変えて作製した高 純度多結晶バルク体試料について、磁化特性、電 流輸送特性及び微細組織の評価を行った。

2. 実験方法

Ar 雰囲気グローブボックス内で単体 Ba, Fe, Co, As, P を仕込組成 BaFe₂(As_{1-x}P_x)₂ (x = 0.25-0.5), Ba(Fe_{1-x}Co_x)₂A₂ (x = 0.06-0.14)となるように秤量し、 遊星式ボールミル装置を用いて粉砕・混合を行った。 混合した原料粉末はペレット成型、石英管に真空封 入後、600-900℃、48-120 h の条件で焼成を行った。 作製した試料は粉末 X 線回折による構成相の同定 および格子定数の算出、SQUID 磁束計による磁化 測定、交流四端子法による電気抵抗率測定、SEM, EDX による微細組織・組成評価を行った。

3. 結果と考察

Fig. 1(a)に 900℃で作製した Pドープ量の系統的 に異なる試料の電気抵抗率の温度依存性を示す。ド ープ量の増大とともに電気抵抗率は低下した。Fig. 1(b)に電気抵抗率から求めた T_c の Pドープ量依存性 を示す。 T_c は 35%ドープ試料において最高の 30 Kで あり、単結晶における 31 K^[3]に近い値を示した。Fig. 1(d)に 600℃で作製した Coドープ試料の T_c のドープ 量依存性を示す。 T_c は 8%ドープ試料で最高の 24 K を示した。

Fig. 1(c)に残留磁化法^[2]から求めた5Kにおける ピーク磁場 H_{pl} のPドープ量依存性を示す。結晶粒 間を流れる輸送臨界電流 J_c^{global} に由来する H_{pl} は、 T_c が極大値をとる35%よりややオーバードープ領域 (40-45%)で高い傾向がみられた。また、Coドープ試 料においても J_c^{global} はオプティマルドープ(8%)と比較 してオーバードープ領域(11-12%)で約2倍向上した (Fig. 1(e))。これらは122系多結晶体において、オー バードーピングが J_c^{global} 向上に有効であることを示唆 する。

本研究は JST さきがけ、SICORP の助成を受けて 行った。

[1] Y. Kamihara et al.: JACS 130 (2008) 3296.

[2] A. Yamamoto et al.: SuST 21 (2008) 095008.

[3] S. Kasahara et al.: PRB 81 (2010) 184519.

Fig.1. Temperature dependence of resistivity (a), doping level dependence of T_c (b) and doping level dependence of remanent magnetization peaks H_{p1} and H_{p2} (c) for the BaFe₂(As_{1-x}P_x)₂ bulks. Doping level dependence of T_c (d) and doping level dependence of global critical current density (e) for the Ba(Fe_{1-x}Co_x)₂As₂ bulks.

超電導テープ材を用いた浮上・つり下げ実験の数値的評価

Numerical evaluation of levitation and suspension experiments with a Tape HTS

<u>槌本 昌則</u>(北科大) <u>TSUCHIMOTO Masanori</u> (Hokkaido Univ. Sci.) E-mail: tsuchi@hus.ac.jp

1. はじめに

最近の YBCO 高温超電導テープ材は高い遮蔽電流密度 と強いピン止め力を持つ[1]。液体窒素でテープ材を永 久磁石下で磁場中冷却着磁し、磁石を引き上げたテープ 材の釣り下げ実験とテープ材を使った磁石の浮上実験を 行ったので報告する。液体窒素中では1時間以上のテー プ材の釣り下げが可能で、磁束クリープが非常に少ない ことが分かった。従来の Bi 系高温超電導テープ材では なかなか難しかった長時間の永久磁石下の釣り下げ・浮 上実験が可能になっている。実験結果を評価するための 数値モデルについても紹介する[2].

2. 実験

図1に永久磁石下でのYBC0テープ材のつり下げ実験の 一例を示す。半径 4.0mm 高さ 2.0mm の円盤状永久磁石の 下で9.75mm×4.1mm×0.095mm で0.309gのYBC0テープ材 を液体窒素中で磁場中冷却着磁し、磁石を引き上げてテ ープ材をつり下げた。テープ材の長さ(=重さ)とテープ材 -永久磁石間のギャップを変えた釣り下げ実験の結果を 表1に示す。○が釣り下げ成功、×が不成功、△が半々 を示す。同じ実験を複数回行うことにより再現性は確認 してある。表からギャップに依存した釣り下げ限界が実 験的に確認できる。つり下げ実験では液体窒素中では1 時間以上のつり下げが可能で、磁束クリープが非常に少 ないことが分かる。図2はテープ材の上での小さな久磁 石の浮上である。浮上実験では浮かす磁石の重さを任意 で変えられないため、浮上限界ははっきりとは得られな い。重ねる枚数の効果はこの重さの磁石では出ていない ことがわかった。

Fig.1 Suspension of a YBCO tape under a magnet.

	weight of sample [g]	one magnet, gap [mm]				two magnets, gap [mm]			
	weight of sample [g]	4.0	5.0	6.0	7.0	6.0	7.0	8.0	9.0
1	0.309	0	0	0	Δ	0	0	0	×
	0.340	0	0	0	×	0	0	Δ	×
	0.355	0	0	Δ	×	0	0	×	×
	0.393	0	×	×	×	0	×	×	×

Fig. 2 Levitation of a magnet on piled YBCO tapes.

3. 数値的ピン止めモデル

モデルではフラクソイドが表面ピン止め点で完全にピン止めされていると仮定する。物体表面において磁場はマックスウェル応力と面垂直方向が成す角を2分する [3]。外部磁場の微小変化によりピン止め点で磁場の方向が変化すると、この角2分則によりマックスウェル応力の方向が変化する。不平衡なマックスウェル応力を全表面で積分することにより物体力が得られる。磁場は空気中では場として存在するが、超電導体中では文字通り磁場は磁力線に相当するフラクソイドとして存在する。マックスウェル応力の差がピン止め力を越えればフラクソイドは移動して遮蔽電流が流れる。釣り下げ実験の結果ではほぼ同じ傾向を評価できている[2]。

Fig. 3 Angle between Maxwell stress and normal vector is divided into half by magnetic field line.

4. 回転浮上系

YBC0 テープ材と円盤状永久磁石を利用したラジアル型 回転浮上系の例を図4に示す[2]。磁石は半径7.5mm 厚さ 1.5mm 重さ1.0g で、テープ材は下端が液体窒素に浸り伝 導冷却されている。この場合もピン止めによる浮上と考 えている。

Fig. 4 Radial type levitation for rotational system.

5. おわりに

テープ材と磁石を使った釣り下げ・浮上実験とその解 析を行った。詳細実験・計算を引き続き行っている。

参考文献

- M. Yagi, et.al., *Physics Procedia*, vol. 45, pp. 277-280, 2013.
- 2. M. Tsuchimoto, *Physics Procedia*, 2015, in press.
- 3. W.K.H. Panofsky and M. Phillips, *Classical Electrisity and Magnetism*, Chap. 6.5, 1961.

低温域の地熱資源有効活用のためのシリカスケール除去用磁気分離装置の開発

Development of the silica scale magnetic-separator

for utilizing geothermal resources with low temperature

三島 史人,秋山 庸子(阪大院工);佐々木 宗建,阪口 圭一(産総研);高木 史昭,奥村 賀嘉男(超電導機構);西嶋 茂宏 (阪大院工)

MISHIMA Fumihito, AKIYAMA Yoko(Osaka University); SASAKI Munetake, SAKAGUCHI Keiichi (AIST); TAKAGI Fumiaki, OKUMURA Kagao(Japanese Super-conducting Organization CO, LTD); and NISHIJIMA Shigehiro (Osaka University); E-mail: f-mishima@see.eng.osaka-u.ac.jp

1. はじめに

2011 年の東日本大震災以降、再生可能エネルギー導入 拡大が望まれる中、世界第3位となる地熱資源を有する我が 国では、ベース電源として活用可能な地熱発電が大きな注目 を集めている。本研究は地熱開発を促進する取り組みとして、 地熱資源の有効活用のためのスケール除去技術の開発を目 的としている。バイナリー・サイクル発電は、低温の熱資源を 発電に用いており、熱交換器でのスケール付着が問題になっ ている。温泉成分の堆積物であるスケールが熱交換器に付 着し変換効率を低下させるため、発電の経済性を向上させる ためにスケールの形成を未然に防ぐことが課題となっている。 現在シリカスケール対策としては、薬剤によって pH を調整す ることでスケールを抑制する手法がとられているが、熱交換器 を劣化させ、耐用年数を低下させることが指摘されている。そ こで本研究では、熱交換器通過前の熱水に対して、スケール が析出する前に無機凝結剤を添加してスケールの原因となる ケイ酸を共沈させ、磁気分離法によって迅速に取り除くことを 検討している。そして、スケールが析出する前段において分 離除去を行い、温泉水からシリカを含むスケールを、非晶系 シリカとして 150ppm 程度まで低減させることが可能な磁気分 離装置の開発を行っている。これにより少ない装置負荷で熱 交換器等へのスケールの付着を防止することが可能になり、 スケール問題の解決手法の1つとして、地熱水を利用する事 業の実施に貢献できると考える。

2. 温泉水を用いたビーカー実験

温泉水 80ml を 85℃に保温し、撹拌した状態でビーカー試 験を行った。無機凝結剤は、ポリ硫酸第二鉄(PFS)、塩化第 一鉄(FeCl₂)、および塩化第二鉄(FeCl₃)を使用した。温泉水 に対して無機凝結剤をそれぞれ0.5,1,2,4 mL/L 添加した後、 4N-NaOH を用いて pH を調整し、シリカを含む水酸化鉄フロ ックを沈殿させた。その後、マグネタイトと高分子凝集剤を加 えて磁気シーディングを行い磁性シリカフロックとし、永久磁 石(ネオジウム磁石:最大磁束密度 0.4T)で磁気分離を行い、 得られた分離後の液中の Si の濃度を ICP-AES によって測定 し、各量添加時のケイ酸除去率を算出した。

Fig.1より塩化第一鉄の添加量の増加とともにケイ酸共沈率 も増加し、2 mL/L 添加時に 90 %を超えた。また、0.5 mL/L 前 後加えた時に、シリカ濃度が熱交換器通過後の温度における 溶解度である 150 ppm 以下となり、スケールの析出を防止す ることができると考えられる。

3. 5t/h 処理用シリカ除去装置による現地実験

ビーカー試験で得た結果をもとに、Fig.2 に示すシリカスケ ール除去システムを設計し、分離機構の評価試験を実施した。 処理量 5ton/h(実際は 200L/2min.)にて実際の温泉水(九州 地方、湯布院)を用いたシリカ除去実験を行った。現地実験 では、シリカ除去率を優先して薬剤を投与した。温泉 200L に 対して塩化第一鉄水溶液を2mL/L 添加し、水酸化ナトリウム でpH 調整後、撹拌してフロックを形成させた。次に、フロック に強磁性を付与させるために、マグネタイト 0.4 g/L、高分子 凝集剤4mL/L を添加し、撹拌して強磁性フロックを形成させた。そして、温泉水中に形成された強磁性フロックを開放勾配磁気分離 (OGMS)を利用した磁気アシスト沈殿装置によって 急速沈殿を行い、残った微細なフロックを高勾配磁気分離 (HGMS)によって回収した。また、ケイ酸除去率を算出するためにシリカ計 (デジタルテスター高濃度シリカ HI770, HANNA Instruments)により分離前後の Si の濃度を計測した。

磁気分離装置による SiO₂ 除去率は、ビーカー試験のデー タを再現し、流量を 100~150L/min と変化させて処理した場 合にも磁気分離としてほぼ良好な結果を得ることができた。

4. まとめ

本研究では、スケールの原因物質であるケイ酸について磁 気力を利用して除去することを試み、およそ 90%のケイ酸を除 去することに成功した。今後は実用化に向けて、コスト削減の ための薬剤添加条件の検討と装置の連続処理化およびスケ ールアップを行う予定である。

Fig.1 Silica concentration after magnetic separation using PFS, FeCl₂ and FeCl₃.

Fig.2 Silica removal system by magnetic separation.

謝辞

本研究は、平成25-27 年度 NEDO「地熱発電技術研究開 発事業」における「低温域の地熱資源有効活用のためのスケ ール除去技術の開発」の一環として委託を受け実施したもの である。

凝集磁気分離による懸濁廃水処理法の有用性~凝集沈降分離との比較 Comparison of usefulness of coagulation-magnetic separation as suspension wastewater purification process against coagulating sedimentation

渡辺 紡, 酒井 保藏(宇都宮大);花井 洋輔, 中田 英寿(富士電機)

WATANABE Tsumugi, SAKAI Yasuzo(Utsunomiya Univ.); HANAI Yosuke, NAKATA Eiju(Fuji Electric Co.) E-mail: sakaiy@cc.utsunomiya-u.ac.jp

1. はじめに

凝集沈降分離可能な懸濁廃液は基本的にすべて凝集磁 気分離できる。本研究では、実用装置の設計に役立つ磁気 分離試験法を提案する。連続磁気分離できる装置を用い、磁 気シーディングのための磁性粉添加量や凝集剤の種類や量 の最適条件を実験的に調べることができた。得られた結果か ら実用装置の必要規模を推計できるようになるため、計画段 階での凝集沈降分離との比較が可能となった。

凝集沈降分離法は懸濁廃液に対して広く用いられている。 ほとんどの場合、凝集時にマグネタイトを添加すると強磁性フ ロックとなり磁気分離できる。近年、マグネタイトが無機凝集剤 と同等以下のコストで使用できるようになったため、高速分離 可能な凝集磁気分離が沈降分離と経済性で比較・検討でき るようになった。凝集沈降分離は沈降試験により実用装置の 設計が可能であるが、凝集磁気分離はスケールアップの手法 が確立されていない。本研究では、カーボンブラックの懸濁 廃水にマグネタイト及び高分子凝集剤を添加し凝集磁気分 離を行い、その実用性について従来の沈降分離法と比較・検 討するとともに、標準装置による凝集磁気分離実験から実用 装置の設計に至るスケールアップの手法について報告する。

2. 実験方法

カーボンブラックを水に分散させ濁度を約60NTUとし模擬 廃水とした。これに任意の量のマグネタイトと高分子凝集剤を 添加し沈降分離と磁気分離を比較した。

凝集沈降分離:模擬廃水に高分子凝集剤を添加し濁度を 測定しながら緩速撹拌しフロックを成長させた後、撹拌を止め、 沈降による濁度の減少を 30 分間測定した。アニオン、ノニオ ン、カチオン系凝集剤を比較した。

凝集磁気分離:磁化活性汚泥法の標準実験装置の回転磁 石ドラム型磁気分離装置部分(直径9 cm、幅 10 cm、表面最 大磁束密度 9×10 mT、6 mm ピッチの多極プラスチック磁石 を巻いたもの)を使用した。 模擬廃水に 25~200 mg/L のマグ ネタイトと 0.4 mg/L のアニオン系高分子凝集剤を添加し、所 定流量で磁気分離し流出水の濁度を測定した。

3. 結果と考察

凝集沈降分離:異なる高分子凝集剤を用いて行なった沈 降試験の結果をFig.1に示す。アニオン系高分子凝集剤が沈 降速度・最終濁度共に最も良い結果が得られた。最適濃度は 0.4 mg/L でフロックの沈降速度は約1.3 m/h だった。

凝集磁気分離:流量と流出濁度の関係を Fig.2 に示す。マ グネタイトの添加量が増加するにつれてフロックが受ける磁力 が強くなるため高流量時のフロックの流出は抑えられた。また 今回行なった濃度範囲では磁気分離槽 HRT 7 s(流量 0.7 L/min)において 90%の SS を除去することができた。

以上の結果をもとに処理量 500 m³/d の運転条件を想定し、 凝集沈降分離と凝集磁気分離のコストを比較する。まず凝集

沈降分離は面積 15 m²の沈殿槽が必要なことが推算できる。 また高分子凝集剤コストは500円/kgとして2.2万円/yとなる。 このほか沈降汚泥の濃縮脱水装置とそのランニングコストも必 要となる。

標準装置と比べ、現在開発している実用規模の磁気分離 装置は約 100 倍の性能が見込まれているため実スケールで 上記の凝集沈降分離と比較できる。Fig.2 より、実用規模の磁 気分離装置ではマグネタイト 25 mg/L のとき処理量は 101 m³/d と推定でき、この条件では 5 台で分離可能と推定するこ とができる。磁気分離装置が約110万円/台とすると550万円、 マグネタイトが 100 円/kg とすると 46 万円/y となる。また沈降 分離と同様に高分子凝集剤コストが2.2万円/yとなる。マグネ タイトを 200 mg/L にするとマグネタイトのコストが 8 倍になるが Fig.2から磁気分離装置は3台になりスペースの節約になるこ とが予想できる。

4. まとめ

標準装置による連続磁気分離試験を行なうことで実用規模 の磁気分離プロセスを想定することが可能となった。その結果、 フルスケールで凝集沈降分離と凝集磁気分離の比較が可能 となった。磁気分離は沈降分離と比べて沈降汚泥の濃縮脱 水が不要なことや省スペース化の利点が示唆された。

参考文献

[1] Y. Sakai, et al.: J. Cryo. Super. Jpn. Vol.46 No.11 (2011) p.669-p.675

磁気分離を用いた放射能汚染汚泥の簡易な除染技術の検討 Study of Simple Decontamination Technology of Radioactive Contamination Sludge Using Magnetic Separation

<u>佐藤 翔大</u>, 酒井 保藏, 高橋 克哉 (宇都宮大) <u>SATO Shodai</u>, SAKAI Yasuzo, TAKAHASHI Katsuya (Utsunomiya Univ.) E-mail: sakaiy@cc.utsunomiya-u.ac.jp

1. はじめに

近年、放射性セシウムを含んだ下水処理施設の汚泥の処 理が問題となっている。そこで、放射性セシウムを含んだ模擬 放射性汚泥を用いて磁気分離による放射性汚泥の簡易な除 染方法についての検討を行った。その結果、磁気分離によっ て特別な前処理を施すことなく、除染汚泥体積残存率約 80%中の放射能残存率を約 20%にすることができ除染が可 能であることが示唆された。

放射性汚泥とは福島原発の事故によって環境中に放出された放射性セシウムが土壌中の粘土物質に吸着され、雨水によって下水道を経由して下水終末処理場の活性汚泥に蓄積されたものである。この汚泥は通常であれば、脱水や焼却の濃縮過程を経て堆肥化及び埋め立て処分されるが、この過程で8000 Bq/kgを超えたものは指定廃棄物として扱われ、通常の埋め立て処分ができない。この汚染汚泥は処分できずに保管されている。放射性セシウムを強く吸着する粘土物質は常磁性であることから、原理的には磁石で分離することが可能であることを報告した[1]。本研究では引き続き、放射性セシウムを含む模擬汚染汚泥の磁気分離による除染を試みるとともに、簡易な汚泥除染技術の可能性について検討した。

2. 実験方法

本実験における磁気分離装置の模式図を Fig.1 に示した。 これはアクリルパイプ中に磁極部分の最大磁束密度が1 T の マグネットバーを固定し密閉したものに送液用のチューブを 上下に取り付けた構造となっている。模擬汚染汚泥[1]1 L を この装置の下部より流し入れ、マグネットバーの磁極部分に汚 泥中の粘土物質を付着させた。つぎに、この粘土物質を逆洗 によって回収し、濃縮汚泥とした。これを磁気分離操作1回分 とし、模擬汚染汚泥の各流入速度で 5 回繰り返した。模擬汚 染汚泥および各操作ごとの濃縮汚泥の放射能濃度および 30 分沈降体積を測定した。その結果から、放射能残存率(The residual rate of radioactivity)および除染汚泥体積残存率 (The volume of the residual rate of decontamination sludge) を求めた。磁気分離条件による分離性能の違いについて評 価を行った。

Fig.1 Schematic diagram of a magnetic separator

Fig.2 The residual rate of radioactivity in each of flow rate

Fig.3 The volume of the residual rate of decontamination sludge in each of the flow rate

3. 実験結果と考察

各流速に対する放射能残存率および除染汚泥体積残存 率を、それぞれ Fig.2、Fig.3 に示した。この結果から流速 170 ml/min において、磁気分離 2 回で除染汚泥体積残存率約 80%中の放射能残存率を約 20%にすることができ、磁気分 離 5 回で除染汚泥体積残存率約 60%中の放射能残存率を 10%にすることができた。また流速が約10倍になっても、磁気 分離 2 回で約 5 割の除染ができ、このとき除染汚泥体積残存 率は 95%以上が得られた。このことは、高い除染率が必要で ない場合は、本除染法によって、ほとんどの汚泥を一般廃棄 物として処分可能できることを示している。

4. まとめ

実験の結果から、放射性汚泥の放射能残存率を約 20%に できたことから放射性汚泥の除染ができる可能性が示唆され た。また、模擬放射性汚泥は特別な前処理を施すこともなく 濃縮汚泥の回収も逆洗のみで行えることから、放射性汚泥の 処理プロセスの簡素化や、連続処理の可能性もうかがえた。

参考文献

 Y. Sakai, et al.: Abstracts of CSJ Conference, Vol. 89 (2014) p.50

硝化液循環磁化活性汚泥法を用いた 各種高窒素含有廃水の生物学的窒素除去法 Biological Nitrogen Removal Process of Some Nitrogen Rich-Organic Wastewaters with Circulating Denitrification Method

武藤 勇希, 酒井 保藏, 本間 司, 廣島 浩二(宇都宮大);井原 一高(神戸大);梅津 一孝(帯広畜産大) <u>MUTO Yuki</u>, SAKAI Yasuzo, HONMA Tsukasa, HIROSHIMA Koji (Utsunomiya Univ.); IHARA Ikko (Kobe Univ.); UMETSU Kazutaka (Obihiro Univ. of Agri. Veteri. Med.) E-mail: sakaiy@cc.utsunomiya-u.ac.jp

1. はじめに

廃水に含まれる窒素は富栄養化を引き起こす環境汚染の 原因物質である。窒素除去法には硝化液循環活性汚泥法が よく用いられるが、本研究では磁化活性汚泥[1](マグネタイト を吸着した水処理微生物凝集体)と磁気分離による硝化液循 環法を提案し、その特徴と窒素除去性能について実験的に 確かめた。結果、従来の手法と比較して、より高濃度の窒素 含有廃水の除去が可能となることが認められた。

現在主流となっている廃水中の窒素除去法である硝化液 循環活性汚泥法をFig.1に示す。

Fig.1 Process Flow of Circulating Denitrification System with Activated Sludge

この方法では、余剰汚泥の発生やプロセスの複雑化などの問題がある。そこで、我々は磁化活性汚泥と磁気分離を活用した Fig.2 に示す硝化液循環磁化活性汚泥法を考えた。

Fig.2 Process Flow of Circulating Denitrification System with Magnetic Activated Sludge

この方法は、(1)磁気分離により、高濃度微生物を分離できる。(2)余剰汚泥の削減と、プロセスの簡略化が期待できる。 (3)微生物を長く保持するため、難分解性窒素含有有機物を 処理することができるなどの特徴がある。

本研究では、硝化液循環磁化活性汚泥法を高窒素含有 難分解性有機物である N,N-ジメチルホルムアミド(DMF)を主 成分とする廃水や、高窒素含有廃水であるメタン発酵流出水 の模擬廃水で検証した。

2. 実験方法

それぞれの模擬廃水を装置に流入させ、連続処理した。 測定項目は、化学的酸素要求量(COD_{cr})、アンモニア態窒素 濃度、亜硝酸態窒素濃度、硝酸態窒素濃度とした。

実験に用いた装置を Fig.3 に示す。装置は脱窒素槽と硝 化槽から成る。脱窒素槽は、無酸素状態の磁化活性汚泥法 とし、有機物を分解後、磁気ドラム(磁場:0.08 T)で処理水と汚 泥を分離し、処理水を硝化槽に送り、汚泥は脱窒素槽に返送 した。硝化槽は、スポンジを支持体として、硝化菌を増殖させ る固定化微生物による接触酸化槽とした。エアレーション(2 L /min)により酸素供給と液循環を行い、アンモニアの硝化と残

Fig.3 Experimental Equipment of Circulating Denitrification System with Magnetic Activated Sludge

存有機物の分解を行った。硝化槽内の液(硝化液)を脱窒素 槽に戻し、硝酸の窒素への転換(脱窒)を行った。

以下にそれぞれの実験の条件を示す。

(a) DMF を主成分とする模擬廃液の処理

廃水は 500 mg-COD_{cr}/L、110 mg-N/L になるように調製 し、流入量は 10 L/dとした。硝化槽から硝化液の 80%を脱窒 素槽に循環させ、残りの 20%を処理水として引き抜いた。 (b)メタン発酵模擬廃水の処理

廃水を 500 mg-COD_{cr}/L、500 mg-N/L になるように調製 し、流入量を 2.5 L/dとした。硝化槽から硝化液の 83%を脱 窒素槽に循環させ、残りの 17%を処理水として引き抜いた。

3. 結果と考察

(a) DMF を主成分とする模擬廃液の処理

脱窒素槽の微生物濃度 6000~7000 mg/L、汚泥沈降率 (SV₃₀)60%以上であったが、磁気分離を用いることにより固液 分離を良好に行うことができた。窒素除去率は 70%程度、 COD_{cr}除去率は 80%以上とどちらも良好な値を示した。 (b)メタン発酵模擬廃水の処理

NH₃は硝化を阻害するが硝化槽の pH を 7 以下に保持で きるため、NH₄*とすることができ、毒性を抑えることができた。 窒素除去率はおよそ 50%程度であったが、これは脱窒に必 要な有機物が不足しているためであり、理論的な限界に近い 良好な値と推察された。窒素除去率をさらに改善するために は、有機物を添加する必要があると考えられる。

4. まとめ

硝化液循環磁化活性汚泥法をDMFなどの高窒素含有難 分解性有機物に適用することにより、高い窒素除去率を得る ことができた。

参考文献

 Y. Sakai, et al.: J. Cryo. Super. Soc. Jpn. Vol.46 No.11 (2011) p669~p675

— 69 —

超伝導変圧器と超伝導ケーブルの限流協調に関する検討(1)

Investigation of cooperation of the current limiting of superconducting transformers and superconducting cables

<u>進藤 遼太郎</u>, 足立 和久, 吉田 幸市, 岩熊 成卓(九州大学); 富岡 章, 今野 雅行(富士電機) <u>SHINDO Ryotaro</u>, ADACHI Kazuhisa, YOSHIDA Koichi, IWAKUMA Masataka (Kyushu Univ.); TOMIOKA Akira, KONNNO Masayuki (Fuji Electric Co. Ltd.); E-mail: shindo@sc.kyushu-u.ac.jp

1. まえがき

超伝導を電力機器に応用することにより、超伝導体の低 損失、高電流密度といった特性から、機器の小型・軽量・高効 率化が期待できる。我々はこれまで、REBCO 超伝導巻線を 使用した変圧器において、突発短絡時に巻線が常電導転移 して高抵抗となることに着目し、この高抵抗を利用した限流機 能付き超伝導変圧器の研究を行ってきた。将来、超伝導変圧 器を実系統に投入する際には、超伝導ケーブルとの組合せと なり、ケーブルにも限流機能を持たせ、限流協調を行う方法 が合理的と考えられる。

今回、20MVA 超伝導変圧器に超伝導ケーブルを接続 した超伝導変圧器系統における限流協調の検討を行った。

2. 変圧器の設計

Fig.1 に変圧器の構造図を示す。これは変圧器の垂直方 向の断面図であり、変圧器は一次巻線を二次巻線で挟む構 造となっている。また、Table.1 に変圧器の諸元を示す。巻線 は REBCO テープ線材を並列したものを使用し、一次巻線は 1本あたり3並列、二次巻線は1本あたり24並列とした。また、 パーセントインピーダンス%IZ は、実際の系統における 20MVA 級常電導変圧器のものと同等の15%とした。

%IZの式は次のように表される。

$$\% IZ = 0.395 \frac{P l_m \left[\alpha + (d_1 + d_2)/3 \right]}{s g e^2 h/k} \frac{2f}{100} [\%]$$
(1)

ここで、P:容量、*l*_m:巻線平均長、α:巻線間間隔、*d*₁、*d*₂: 一次および二次巻線の幅、h:巻線高さ、k:磁束通路高さに 対する補正係数、s:脚数、q:漏れ磁束通路数、e:1 ターン あたりの電圧である。さらに e は鉄心断面積 S をもちいて次の ように表される。

 $e = 4.44 \, fBS$

(2)

ここで、巻線間間隔を定めてしまえば、変圧器の寸法は鉄心の大きさと巻線の幅によって決まることになる。今回は巻線間間隔 α を 50[mm]に設定し、鉄心半径を 178[mm]、安定化材の Ag の厚さを 18[um]、Cu の厚さを 50[um]とした。

3. ケーブルの設計

ケーブル半径は26.75[mm]で、磁界を3.67[uT/A]の幅 5mm の超伝導線材を24本円筒状に並べ、ケーブルとして構成し 二次側に接続した。

4. 数值解析

まず、有限要素法解析ソフトによる磁場解析を行い、この 結果を磁束フロー抵抗まで考慮して過大電流に対する応答 特性を解析する数値解析プログラムに代入し、突発短絡時の 超伝導系統の応答特性を解析した。ここではケーブル長をパ ラメータとした。解析結果の詳細は当日報告する。

Fig.1 Cross section of a 20MVA superconducting transformer

Table.1 Parameter of a 20MVA superconducting transformer

Phase	3φ
Capacity	20MVA
Superconducting wire	REBCO tape
Voltage (Prim. /Sec.)	66kV/6.9kV
Current (Prim. /Sec.)	303A/2898.6A
Frequency	60Hz
Conductor (Prim. /Sec.)	3 parallel / 24 parallel
%IZ	15%
В	1.4T

Fig.2 Superconducting grid composed of a superconducting transformer and cables

20kW 級小型全超電導動機電動機の界磁巻線の形状検討

Optimum arrangement of the field winding for 20kW fully superconducting synchronous motor

田村 亮人, 岩熊 成卓, 佐藤 誠樹, 吉田 幸市 (九州大学); 長谷 吉二, 富岡 章 (富士電機); 和泉 輝郎(ISTEC) TAMURA Katsuhito, IWAKUMA Masataka, SATO Seiki, YOSHIDA Koichi (Kyushu University); HASE Yoshiji, TOMIOKA Akira (Fuji Electric); IZUMI Teruro (ISTEC)

1. はじめに

同期電動機を超電導化する場合、超電導巻線が鉄心の飽 和磁束以上の磁界を容易に発生しうることから、界磁・電機子 ともに無鉄心化しうる。また同期機は回転界磁子の高磁界化 によりギャップ磁束密度を大きく設計でき、無鉄心化による小 型・軽量化とともに、損失低減による高効率化も期待できる。 これまで同期機超電導化の研究は直流磁界を発生する回転 界磁子のみを超電導化する半超電導機が主流であった。本 研究では、回転機の究極の小型・軽量・高効率化を図るため に、界磁に加えて電機子をも超電導化することを目指してい る。まず、我々は小型の全超電導機について設計検討を行う に際し、無鉄心回転界磁巻線の最適構造について、数値解 析により検討した。

2. 20kW 級全超電導動機電動機の仕様

Table. 1 に想定した全超電導機の仕様を示す。超電導線 材としては、厚さ 100 µm のハステロイを基板とする幅 5mm、 超電導層 1.5µm 厚、銀層 4µm 厚で銅安定化層を加えた全 体が 300 μ m 厚の IBAD-PLD 法 EuBCO テープを想定した。 この臨界電流 Lの温度 T、磁場 B 依存性としては、現在開発 されているテープ線材を参考に Fig.1を仮定した。BHO 人工 ピンニングセンター導入により Ic の磁場特性向上を図ったも のであり、Ic=250A@77K, 0T である。

3. 界磁コイル巻線形状の検討

解析には市販の電磁場解析ソフト JMAG を用いた。界磁巻 線の回転界磁子内部の配置は、Fig.2 に示す4通りの形状で 設定し、それぞれの形状について、トルクとトルクリプルの値を 評価した。形状効果を比較するため、巻線の形状以外の巻数 等は同一とした。

4. 解析結果と考察

各形状におけるトルクとトルクリプルの値を Fig.3 と Fid.4 に 示す。これら得られた結果より、Type-3 が本研究において最 も優れた形状であることが分かった。また、この場合の効率は 97%であった。

Table.1 Specifications of REBCO Superc	onducting Motor
Output power	20kW
Number of poles	2
Frequency	10Hz
Number of revolutions	600rpm
Armature current	300A
Field current	200A
Operating temperature	64K
Outer diameter	246mm
Effective length	200mm
Gap	3mm

Fig.2 Field-Winding Pattern in the Cross-section of Rotor

風力用 15MW 級 REBCO 超電導同期発電機の電機設計及び特性解析 Electrical design and analysis for 15MW REBCO wind turbine generators

<u>尹 基旭</u>, 岩熊 成卓, 佐藤 誠樹, 吉田 幸市(九州大学);長谷 吉二, 富岡 章(富士電機);
 和泉 輝郎(ISTEC)
 <u>YUN Kiwook</u>, IWAKUMA Masataka, SATO Seiki, YOSHIDA Koichi (Kyushu University);
 HASE Yoshiji, TOMIOKA Akira(Fuji Electric);

IZUMI Teruo (ISTEC)

1. はじめに

洋上風力発電は安定して強い風力が見込める一方で、浮体の建造コストや発電機の重量が問題となるため、大容量かつ軽量な発電機が求められる。発電機を超電導化し、空心構造にすることで磁気装荷の制限がなくなり、発電機を同寸法で大容量化、もしくは発電機を同出力で小型化することが可能である。これまで超電導回転機の研究は回転界磁巻線を超電導体化するタイプが主流であった。界磁巻線に加え、固定子の電機子巻線にも交流超電導体を適応することで更なる軽量化、小型化が可能である。我々は全超電導化の検討を開始した。今回、その第一報として、最適なギャップ磁束密度、ロータ径等について検討したので報告する。

2. 風力用 15MW 級 Y 系全超電導同期発電機の設計検討

同期発電機の容量は電気装荷と磁気装荷の積に比例す る。電気装荷は起磁力、すなわち巻数と電流の積に比例し、 磁気装荷はギャップ磁束密度 Bg と回転子直径、有効長の積 に比例する。超電導界磁子は鉄心の飽和磁束 1.7T 以上の 高磁場化が容易に図れるため、鉄心を使わない巻線構造とし、 Bg をより高くすることで回転子直径や有効長を小さくすること が可能である。同時に無鉄心化による軽量化と銅損の低減に よる高効率化も期待できる。本研究では、回転子直径と Bg を パラメータとし、界磁巻線、電機子巻線を共に超電導化した 全超電導同期発電機について、REBCO線材の通電特性を 考慮したうえで設計検討を行った。

3. パラメータ設定および数値解析

解析は電磁場解析ソフト JMAG を用いた FEM 解析である。 発電機の有効長は 1.5m を基準とした短軸長とし、回転子内 径を3.0m~5.0mまで0.5m刻みで設定した。解析モデルの一 例として、超電導発電機の断面図をFig.1 に示している。Bgを 2T、3T、4T とし、超電導線材長と発電機効率への影響を算 出した。発電機の仕様を Table.1 に、発電機の総重量と効率 ロータ直径依存性を Fig.2、Fig.3 に示している。

4. 解析結果および考察

小型化を目指し、回転子直径を小さくすると、軽量化は可 能であったが、発電機効率が低下する結果となった。しかし、 発電機効率は最大で 99%となり発電機の全超電導化のメリッ トは大きいと言える。今後、さらに検討を進めていく。

rabier opeemeation of superconducting generator	Table.1	Specification	of	superconducting	generator
---	---------	---------------	----	-----------------	-----------

Rated output power [MW]	15
Revolution per minute	10
Rated voltage [V]	6600
Rated current [A]	1315
Number of pole	32
Air gap [mm]	20

Fig.1 Cross section of superconducting generator

TFA-MOD 法 YBCO テープ線材を用いた小型超電導電流リードの特性 Compact HTS current leads prepared by the TFA-MOD processed YBCO tapes

<u>坂本</u>太紀、細野 優人、高橋 祐樹、山田 豊(東海大); 高橋 亨、広長 隆介、引地 康雄、箕輪 昌啓(昭和電線ケーブルシステム) <u>SAKAMOTO Taiki</u>, HOSONO Yuto, TAKAHASHI Yuki, YAMADA Yutaka, (Tokai University); TAKAHASHI Kyo, HIRONAGA Ryusuke, HIKICHI Yasuo, MINOWA Masahiro (SWCC) E-mail:4bazm010@cc.u-tokai.ac.jp

1. はじめに

電流リードとは室温の電源から極低温下の超電導機器 に電流を供給する導体である。一般に Cu 合金が用いられ ているが、熱伝導等による熱侵入量が避けられない。一 方、酸化物超電導材料を用いると電気抵抗 0 であるため ジュール発熱が無く、熱伝導もセラミックスであるため 低く理想的な電流リードが可能となる。

本研究では、TFA-MOD 法 YBCO テープ線材を 4 本用 い、線材を長尺化することで熱侵入量を低減したコンパ クトな 500 A 級小型電流リードの開発を目的とした。

2. 実験方法

TFA-MOD 法により作製した YBCO 線材は、幅5mm、厚さ 約 108 µm (Hastelloy substrate: 100 µm, YBCO layer:1.5 µm, Ag layer: 6 µm)である。77 K における臨界電流: Ic 値 152~156 A、4本の YBCO 線材を配置した。全長 182 mm、 Cu 電極径 40 mm (Cu 電極間長さ 70 mm である。 30 mm (Cu 電極間長さ 70 mm (Cu 電極間 の円筒型 GFRP に2枚スタックした YBCO 線材2組をそ れぞれ、右回りと左回り逆方向に巻きつけ固定する。電 極に溶融させたはんだを充填し、YBCO 線材を差し込み はんだ接合した。熱侵入量を低減するため、Cu 電極間長 さ 70 mm 内で YBCO 線材を円筒状の GFRP に巻きつける 事により線材長を 900 mm に長尺化した。電流リード全体 の発生電圧 Voverall、Cu 両電極と YBCO 線材間の発生電圧 V_{Cu}(+)及び V_{Cu}(-)、YBCO 各線材の発生電圧 V_{YBCO}(電圧端 子間距離:500 mm)を測定した。作製した小型電流リードに 対する性能評価として、熱侵入量の計算を行った。YBCO 線 材の熱侵入量は YBCO 超電導層、Ag 層、Hastelloy 基盤に ついて計算を行い、酸化物中間層は熱侵入量に寄与する断 面積が小さいため無視した。通電試験は昭和電線ケーブル システムにおいて行った。

3. 実験結果及び考察

Fig. 2 に電流リードの通電結果(@77 K, s. f.)を示す。液体窒素中・自己磁場下において約 600 A の通電を達成した。 580 A 通電時に、一部の YBCO 線材に電圧発生が見られ、 630 A 通電時にクエンチした。 $V_{Cu}(+)$ 及び $V_{Cu}(-)$ は通電電流 に伴いほぼ直線的に増加し、580 A 通電時の $V_{Cu}(+)$ は 0.39~0.42 mV、 $V_{Cu}(-)$ は 0.43~0.46 mV となった。この時点の 接続抵抗は、 $V_{Cu}(+)$ 側では 0.64~0.69 $\mu\Omega$ 、 $V_{Cu}(-)$ 側で 0.70~0.75 $\mu\Omega$ に相当し、接続抵抗がやや高いものの、 $V_{Cu}(+)$ 側 と $V_{Cu}(-)$ 側の接続抵抗が近しい値を取ることができた。

Fig. 3 に 77 K - 4.2 K 間の小型電流リードの熱侵入量計算 結果を示す。熱伝導率を基に計算した YBCO 線材 4 本の熱 侵入量は長尺化しない場合では 27.4 mW(6.86 mW/本)であ る。また、GFRPの熱侵入量は 24.8 mW であり、電流リード(全 長:182 mm,有効長さ:70 mm)の熱侵入量は 52.2 mW となっ た。一方、長尺化した YBCO 線材 (820 mm)4 本の熱侵入量 は 2.34 mW (0.585 mW/本)と計算され、長尺化により熱侵入 量は約 1/12 に低減した。しかし GFRP の熱侵入量が相対的に 大きいため、長尺化した場合でも GFRP の熱侵入量を加える と電流リード全体では 27.1 mW と、約 1/2 の低減となったが、 500 A 級電流リードの熱侵入量としては極めて小さいと言え る。

Fig. 2 Transport current performance of the current lead (@77 K, s. f.).

Fig. 3 Heat leakage between 77 K and 4.2 K versus length of the current lead.

nPAD-YBCO テープ線材を用いた超電導電流リードの通電特性 Transport performance of HTS Current Lead Prepared by nPAD-YBCO Tapes

<u>高橋 祐樹</u>、坂本 太紀、山田 豊(東海大); 高橋 亨、中村 達徳、箕輪 昌啓(昭和電線ケーブルシステム) <u>TAKAHASHI Yuki</u>, SAKAMOTO Taiki, YAMADA Yutaka (Tokai University); TAKAHASHI Kyo, NAKAMURA Tatsunori, MINOWA Masahiro (SWCC) E-mail:purapur1222@gmail.com

1. はじめに

超電導線材を用いた電流リードは、室温下の外部電源から 極低温下の超電導マグネット等の超電導応用機器に電力供 給する必要不可欠な部品である。従来の銅及び銅合金製電 流リードでは、銅の高い熱伝導率とジュール発熱による熱侵 入が大きく冷却コストが高くなる問題点がある。そこで、高温 酸化物超電導体を用いることで酸化物の低い熱伝導率、超 電導によるジュール発熱ゼロ、という電気は通すが熱は通し にくい理想的な電流リードが実現する。

また、超電導電流リードは外部磁場の影響を受ける環境下 に置かれることが多いため、磁場中でも高い臨界電流密度を 持つ人エピン導入型超電導線材を用いることで、従来の超電 導線材よりも少ない構成で超電導電流リードの設計が可能と なり、熱侵入の低減と小型化が可能となる。

今回作製した超電導電流リードは、磁場特性に優れた人 エピン導入型超電導線材 nPAD-YBCO テープ線材を用い た。

nPAD-YBCO テープ線材は、昭和電線ケーブルシステム (株)で開発された、BaZrO₃ナノ粒子を超電導層内に微細分 散させた TFA-MOD 法 YBCO 超電導線材である。本報では、 超電導電流リードの通電特性評価として冷凍機を用いた伝導 冷却での臨界電流 (Ic)の特性評価を行った結果を報告す る。

2. 実験方法

Fig. 1 に試作した超電導電流リードの外観及び模式図を示 す。nPAD-YBCO テープ線材は、幅 5 mm、厚さ約 108 µm (Hastelloy substrate: 100 µm、YBCO layer:1.5 µm、Ag layer: 6 µm)である。Ic 値約 250 A の nPAD-YBCO テープ線材を2 枚重ね合わせ、線材両端を Cu 電極にハンダ接合し、GFRP 板で補強して超電導電流リードとした。Cu 電極間は 62 mm、 両 Cu 電極に取り付けた端子間の電圧 Voverallを測定した。

Fig. 2 に超電導電流リードの Ic 測定装置の概略図を示す。 2 段 GM 冷凍機、温度調節用ヒーターにより超電導電流リード の高温端を 80~65 K、低温端を 30~15 K に温度制御し、永 久磁石により外部磁場 0.5 TをnPAD-YBCO テープ線材のテ ープ面に垂直(B⊥)に印加させ通電試験を行った。なお通 電試験は鉄道総合技術研究所にて行った。

3. 実験結果及び考察

Fig. 3 に nPAD-YBCO 超電導電流リードの臨界電流の温 度依存性を示す。。超電導電流リードは高温端部と低温端部 を 80–30 K、77-25 K、70-20 K、65-15 K に温度制御し、このと きの Ic 値はそれぞれ 101A、144 A、248 A、324 A となった。 高温端部 77 K、低温端部 25 K、120 A 通電時の全体電圧は 46 μ V、高温端部 38 μ V、低温端部 8 μ V となり、接続抵抗は それぞれ 0.38 μ Ω、0.32 μ Ω、0.06 μ Ω であった。

nPAD-YBCO テープ線材を用いた超電導電流リードは低 接続抵抗であり、磁場中においても高い臨界電流値を有する ことが確認できた。

Fig. 2 schematic diagram of Ic measurement system of HTS current lead.

Fig. 3 Temperature dependence of Ic at warm end of nPAD-YBCO HTS current lead.

nPAD-YBCO[®]電流リードの耐久性試験 Durability test of nPAD-YBCO[®] superconducting current lead

<u>高橋</u> 亨, 中村 達徳, 引地 康雄, 箕輪 昌啓, 小泉 勉(昭和電線);山田 豊(東海大) <u>TAKAHASHI Kyo</u>, NAKAMURA Tatsunori, HIKICHI Yasuo, MINOWA Masahiro, KOIZUMI Tsutomu (SWCC); YAMADA Yutaka (Tokai University) E-mail: k.takahashi043@cs.swcc.co.jp

1. はじめに

超電導体を利用した超電導応用機器は、極低温且つ真空 容器内に設置されており、その外部より電流が導入される。そ のため、超電導機器と外部電源とを繋ぐ電流リードが必要で ある。この場合、電流リードは電力供給だけでは無く、外部か らの熱侵入を出来る限り遮断することが求められている。また、 電流リードは、様々な磁場環境下において使用されることが 多いため、磁場中での特性にも優れている必要がある。

我々は、磁場中特性に優れた人工ピン止点導入型の REBCO線材(nPAD-YBCO®)を用いて、通電容量や熱侵入 量を改善した電流リードを開発した。また、本超電導電流リー ドは、超電導線材を用いていることから、大容量小型化が可 能となった。これまで、通電時に発生するローレンツ力による 影響を想定した nPAD-YBCO®電流リードの応力解析を進め てきたが[1]、機器によっては室温から極低温への冷却が繰り 返されることから、冷却サイクルによる通電性能への影響も把 握する必要がある。冷却サイクルによる通電性能への影響も把 握する必要がある。冷却サイクルにおいても、繰り返し応力が 超電導線材にかかることから、以前報告したシミュレーション による応力解析の結果を基に、線材単体の繰り返し応力によ る疲労特性に加えて、nPAD-YBCO®の冷却サイクルによる影 響も確認した。さらに、上記の特性を把握した超電導線材を 使用した電流リードを作製し、冷却サイクル試験を行ったので 報告する。

2. 実験方法

疲労特性及び冷却サイクル試験に使用した線材は、幅 5mm、厚さ 120µm とし、シミュレーションによる応力解析より 得られた、500A 通電、外部磁場 0.7T 印加時の最大引張応力 値 0.16GPa の 3 倍にあたる 0.6GPa を繰り返し 1000 回印加し た後、*I*cの劣化を確認した。測定は 3 試料で行った。尚、引張 試験はインストロン型引張試験機を用い、チャック間距離 100mm、引張速度 1mm/min とした。

線材単体の冷却サイクル試験は液体窒素中で I。測定後、 室温に昇温し、冷却-昇温を120回繰り返し10回ごとに通電 を行い、I。の劣化を確認した。

電流リードの冷却サイクル試験は、GFRP製支持部材で補 強された、定格 500A の nPAD-YBCO[®]電流リードを用いた。 超電導電流リードは、液体窒素中にて I_c測定後、室温に昇温 し、冷却-昇温を 60 回繰り返し、10 回ごとに通電試験を行い、 I_c及び通電電極と超電導線との接続抵抗の劣化を確認した。

実験結果及び考察

線材単体の疲労特性の結果をFig.1 に示す。0.6GPaを繰り返し1000回印加し*I*。の劣化が認められないことから、500A通 電、外部磁場 0.7T 印加時のローレンツ力にも充分耐え得る 強度を有していることが確認された。

次に、nPAD-YBCO®に冷却サイクルを 120 回経験させ、所定の回数ごとに I。測定を行い、初期 I。値(I_{c0})で規格化した結果を Fig.2 に示す。120 回冷却サイクルを経験しても I。の劣化がないことが認められた。電流リードの冷却サイクル試験では、冷却サイクルを60 回経験させた結果(Fig.3)、I。及び接続抵抗に変化がないことが認められた。今後、さらに冷却サイクルを重ねていく予定である。

参考文献

K.Takahashi, et al.: Abstracts of CSSJ Conference, Vol. 90 (2014) p.157