微小重カ下 He II 中 における単気泡生成の可視化実験 Visualization Study of single bubble formation in He II under microgravity condition

高田 卓(核融合研);木村 誠宏, 岡村 崇宏(高エネ研);間宮 幹人, 永井 秀明(産総研); 村上 正秀(筑波大) <u>TAKADA Suguru(NIFS)</u>; KIMURA Nobuhiro, OKAMURA Takahiro (KEK); MAMIYA Mikito, NAGAI Hideaki (AIST); MURAKAMI Masahide(U. Tsukuba) E-mail: takada.suguru@LHD.nifs.ac.jp

1. 研究背景

本研究は、超流動ヘリウム(He II) 中の沸騰現象について 重力効果によって隠された物理現象を明らかにすることを目 的としている。このため、微小重力落下棟を用いた微小重力 環境下での He II 中の沸騰の可視化実験を行った。

これまでは、細線ヒータを水平に張り、円筒座標系としてその物理的理解を深めようとしてきた[1,2]。しかし、微小重力下での沸騰の気泡サイズは予想よりはるか大きく、ヒータ細線の長さのオーダーにまで達してしまう。このため、気泡の全容をとらえ、解析のしやすい可視化結果を得るため、極小のヒータを用いる事で球状の単一気泡を発生させる実験を行った。

2. 実験方法

微小重力環境を実現するため、産総研北海道センターに ある落下棟を使用した。この落下棟は 2 重カプセルになって おり、約1.3 秒間 1m-g 未満という高い質の微小重力環境を得 ることが出来る[3]。クライオスタット内に、長さ約 2 mm,直径 0.05 mmのマンガニン線ヒータを水平に設置し、備えられた可 視化窓からテレセントリックレンズを備えたハイスピードカメラ (231 frame/sec)によって可視化を行った。このヒータは両端 に銅被覆のシングルフィラメントNbTi線を用いて 20 mm 程度 2 端子で引き出された後、4 端子法で測定されている(Fig.1)。 ヒータは定電流が印加されており、ヒータの温度上昇によって 電気抵抗が変化することに対応して印加された熱流量は僅か に変化するが、その変化は 4%未満と極めて小さい。

ヒータへの電流は、落下開始の 0.1 s 後に印加されるように プログラムされ、ハイスピードカメラもこれと同期して録画され る(15 ms 程度の遅れ時間は残る)。

Fig.1 a schematic illustration of heater wire configuration

3. 実験結果と考察

撮影された典型的な映像を Fig.2 (a)-(d) に示す。写真は 約 20 x 20 mm の領域を撮影したものであり、中央に見える細 線がヒータであり、 ϕ 0.127 mm の超電導線と ϕ 0.05 mm のマ ンガニン線が Fig.1 のように設置されている。沸騰開始の極め て初期においては、マンガニン線が水平に設置されているこ とを反映して横長に扁平した形で気泡が現れるが(Fig.2(a))、 徐々に気泡成長をしながら球状に移る様が見て取れる。

取得した可視化画像から、気泡の投影面積を計測し、その 値から気泡の直径・体積を算出した。Fig.3 に示すように、気 泡出現の時間をゼロ秒として時間に対して気泡サイズをプロ ットすると、約 1 秒間までの気泡の占める体積がほぼ線形の 相関を持っていることが判る。熱量の積分値と気泡サイズの 間には線形関係が成立していて、温度ごとに熱量に対する気 泡成長比率(growth rate [m³/J])を求める事が出来る。この growth rate と飽和蒸気圧曲線状の潜熱とガス密度の積の逆 数を比にとった無次元数を導入する事で、投入したエネルギ ーのほぼ全てが潜熱輸送に消費されている場合に比べて気 泡がどの程度成長しているのかを調べた(Fig.4)。He I である 4.2K 下では、ほぼこの値が 1 である一方で、He II について はこの値が小さく、潜熱輸送以外の He II への熱拡散項が比 較的大きいことが示唆された。

Fig. 2 A typical series of pictures of single bubble growth in He II under microgravity for 14.02 mW at 1.9 K(a) 0.089 s (b)0.193 s (c) 0.401 s (d) 0.608 s

'nm

olum

Fig. 3 Time variation of bubble size for 14.02 mW at 1.9 K

Fig.4 Ratio to heat generated from the heater of the heat that has been saved in a bubble as latent heat

4. まとめ

微小重力下飽和 He II 中に単一気泡を生成し、その気泡 成長を可視化計測から行った。気泡成長は気泡発生から 投入したエネルギーと線形関係にある領域があることが 判った。この領域の解析から大気圧下 4.2Kの He I では、 潜熱輸送がほぼ全てを担うのに対し、He II においては液 相への熱拡散の寄与が大きいことが示唆される。

- 1. <u>S.Takada</u>, N. Kimura, et al, Adv. in Cryo. Eng. vol.59A (2014)p.292-299
- <u>S.Takada</u>, N. Kimura, et. al., Proceedings of International cryogenic engineering conference 24th (2013)119-122
- 3. N. Kimura, S. Takada, et. al, Cryogenics51, p. 74-78.(2011)

PIV 法による He II 中の膜沸騰現象の研究 PIV Measurement Study of He II Film Boiling Phenomena

<u>村上 正秀</u>(筑波大);高田 卓(NIFS);野沢 正和(秋田高専) <u>MURAKAMI Masahide</u>(U. Tsukuba), TAKADA Suguru (NIFS), NOZAWA Masakazu (Akita Nat'l Coll. of Tech.) E-mail: murakami@kz.tsukuba.ac.jp

1. まえがき

He II 中の膜沸騰モードにはノイジーとサイレントの2種類が あり、両モードは蒸気膜・気泡の不安定挙動において大差が ある[1]。両者の差異についてもっと詳細に、あるいは新しい 観点から調べるため、最近汎用に耐えるようになってきた PIV 法を応用して、沸騰気泡の周辺における流速場を求めた。

2. 実験装置と解析法

PIVトレーサ粒子はHe II 中で中立安定密度を持つ水素-重 水素固体微粒子である。光学系は、連続光 YAG レーザーと 高速ビデオで構成した。沸騰の発生用ヒータとして、10 mm(幅)x 39 mm(奥行)の平板と5 mm(直径)x 50 mm(長)の円 筒状のもの(共に水平設置)を用いた。PIV 解析場は、ヒータ 断面を含む鉛直平面(60 mm(水平方向)x 50 mm(鉛直))で、 解析対象は、蒸気泡および周囲 He II 中のトレーサ粒子の運 動である。ビデオの撮像速度は、速い大規模現象であるノイ ジー沸騰で1000コマ/秒、遅い非沸騰状態に対しては125コ マ/秒とし、おのおの5秒から20秒間の現象を解析した。1000 ないしは 2000 コマの画像に対して直接相互相関法により粒 子速度(及び気泡変形・移動速度)を求めた。こうして求めた 多数枚の速度ベクトル図は、詳細な検討に際して有意であり 得るが、大域情報に対する付加価値は直接可視化画像に比 べて本質的にそんなに大きくはなく、何よりも情報過多である。 そこで時間平均をとると、凡そではあるが主に蒸気膜・気泡の 動きに誘起された交番流速成分と直流的速度成分が分離さ れる。今回はおもに後者の結果について報告する。

3. 実験結果と議論

流速情報の源であるトレーサ粒子運動は、i)超流動熱カウン ター流における常流動成分流(ヒータを離れる方向)、ii)蒸気 膜・気泡の動きに誘起された全体質量流と自然対流(浮力は He II で下向き、He I で上向き)、iii)量子化渦にトラップされた 粒子運動(超流動成分流と同方向=ヒータへ向かう方向)、を 反映している。

・時間平均速度ベクトルおよび等速度線図

図 1-1: 蒸気泡が成長・消滅を繰り返すヒータ周辺と、その 上部の上方へ向かう気泡運動誘起性の高速プルーム(最大 流速 0.172 m/s)が認められる。その周囲のヒータに近い辺り では熱カウンター流による放射状外向き流が、上部ではプル ームへのエントレインメント流が見られる。

図 1-2: 11 時の方向へ弱いプルームがあり、その反対側 4 時方面にはヒータへの流入が見られる。前者は強い気泡運動がある領域で、後者は気泡運動が弱い領域であり、一断面内では時間平均しても軸対称とはならない。

図 2: 気泡領域直上(非沸騰ではヒータ直上)の平均流速 を熱流束に対してプロットした(平板ヒータ、1.8 K)。非沸騰、 ノイジーとサイレント沸騰の 3 ケースが明確に弁別される。熱 カウンター流理論値を点線で示した。

参考文献

1. M. Nozawa et. al.: J.Cryo.Soc.Jpn. 45-2 (2010) pp. 36-42.

⊠ 1-1:Noisy boiling(Planar) 1.96 K, 6.6x10⁴ W/m²

⊠ 1-2:Noisy boiling(Cylindrical)1.78K, 1.2x10⁴ W/m²

 \boxtimes 2 : Averaged flow velocity vs heat flux (Planar, 1.8 K) .

水平円管を流動する気液二相液体窒素のボイド率測定と圧力損失、熱伝達特性 Heat transfer characteristics of boiling nitrogen flow in a horizontal square pipe

<u>大平勝秀</u>、森下 琢哉、渡部 久俊、高橋 幸一(東北大 流体研)、小林 弘明、田口 秀之(JAXA)、青木 五男(ジェック東理 社) OHIRA Katsuhide, MORISHITA Takuya, WATANABE Hisatoshi, TAKAHASHI Koichi (IFS, Tohoku University) KOBAYASHI Hiroaki, TAGUCHI Hideyuki (JAXA), AOKI Itsuo (JECC TORISHA)

E-mail: ohira@luna.ifs.tohoku.ac.jp

1. はじめに

JAXA では、液体水素を燃料とする極超音速予冷ターボジ ェットエンジン技術の開発を進めている。エンジン始動時、配 管系は常温であるため液体水素は気液二相流動状態となる。 また、高速飛行時は高温空気と液体水素が熱交換を行うので 強制対流沸騰熱伝達状態となり、圧力損失と熱伝達特性を 把握することが重要となる。本研究では、水平伝熱円管を流 動する液体窒素沸騰二相流の流動パターン(高速度カメラ)、 ボイド率、圧力損失、熱伝達特性の関係を明らかにする。

2. 実験装置および実験方法

テストセクションを図1に示す。長さ1200 mm、内径15 mm の伝熱円管の外壁にニクロム線ヒータをスタイキャストで固着 し加熱した。圧力損失は加熱区間500 mmで測定し、局所熱 伝達率は流れ方向8点で測定した外壁温度から算出した。本 発表では、流れ方向および管頂部(T5)、底部(T6)の局所熱 伝達率を評価した。伝熱部下流には2種類(水平対向円筒極 板型、二重螺旋型)のボイド率計、高速度カメラによる可視化 部を設置している。試験時の流速0.14~2.67 m/s、質量流束 $G=112~2137 \text{ kg/(m^2)}、熱流束 q=5、10、20 kW/m² である。$

3. 実験結果および考察

気泡流、プラグ流、スラグ流、スラグ・環状流、波状・環状流、 波状流の流動パターンを観察した。図 2 にボイド率計で測定 したボイド率 α と熱平衡クオリティ x_{eq} を示す。 $x_{eq} < 0$ の部分で はサブクール沸騰が発生して気泡が発生している。図には均 質流モデル(s = 1)と Winterton、Butterworth、Khalil の分離 流モデルを示す。二重螺旋型はボイド率測定値にばらつきが 大きく、均質流モデルは実際のボイド率を過大評価している。

水平管の圧力損失は加速損失と摩擦損失から成る。従来 の圧力損失評価モデルは円管を流動する常温流体の実験結 果をベースにしており、極低温流体(液体窒素)へ適用した報 告例は少ない。本実験では、ランタンクを加圧して(0.1~0.145 MPa)伝熱管へ圧送しているため、圧力損失測定部がサブク ール状態($x_{eq} < 0$)では、液単相の Blasius 式で評価した。サ ブクール沸騰の影響が大きい場合(可視化部で Plug、Slug flow)を除き、 ± 30 %以内で Blasius 式と良い一致を示した。二 相流状態($x_{eq} > 0$)では、前述のモデルに加え合計 10 個 (Chisholm、Smith、Nishino、Levy、Woldesemayat、Kadambi) の圧力損失モデルと実験値の比較を平均偏差、標準偏差を 用いて定量的に行った。平均偏差では Butterworth モデル、 標準偏差ではLevyモデル、 ± 30 %以内に入っているデータ量 は Butterworth モデルが良い結果を示した。総合的には図 3 の Butterworth モデルが実験値と良い相関を示した。

サブクール状態 ($x_{eq} < 0$)では液単相強制対流熱伝達が支配的であり、頂部、底部で熱伝達率の差は殆ど認められなかった。即ち、サブクール沸騰 (気泡発生)の影響が大きい場合(可視化部で Slug、Slug-Annular flow)を除き、±30%以内でDittus-Boelter 式と良い一致を示した。二相流状態 ($x_{eq} > 0$)では、沸騰が開始する質量流束点は熱流束が小さい程小さくなり、熱伝達率の増加量は熱流束が大きい程大きくなる。熱流束一定の場合、管底部では質量流束の低下に伴い熱伝達率は増加して一定値まで達した後、一定の低質量流束域まで維持される。頂部では質量流束の低下に伴い発生した気泡が頂部で熱伝達を促進するため、底部よりも熱伝達率は増加

する。さらに低質量流束になると壁面がドライアウトして熱伝達率は大きく劣化する。管頂部、底部の熱伝達率と4個(Gunger-Winterton、Liu-Winterton、Steiner、Kandlikar)の熱伝達式の比較を平均偏差、標準偏差を用いて定量的に行った。総合的には図4のGunger-Wintertonモデルが実験値と良い相関を示した。

Fig. 4 Measured versus calculated heat transfer coefficients.

スラッシュ窒素の自然対流熱伝達率測定試験結果

Experiment for measuring natural convection heat transfer coefficient of slush nitrogen

池内 正充,李 潤錫,駒込 敏弘,矢口 広晴(前川製作所)

IKEUCHI Masamitsu, LEE Yoonseok, KOMAGOME Toshihiro, YAGUCHI Hiroharu (Mayekawa Mfg.)

E-mail: masamitsu-ikeuchi@mayekawa.co.jp

1. はじめに

我々は以前からスラッシュ窒素(以下 SIN₂)の強制対流下 での冷却特性について研究を行ってきた^[1]. 今回, SIN₂の冷 却応用を広げるため,自然対流下での試験を行った. 試験は ガラスデュワ内にヒータを設置し, Freeze-Thaw 法で生成した 固体窒素を攪拌してスラッシュ状とした後,自然沈降を待って ヒータを発熱させてその時の温度測定を行い,熱伝達率を算 出した. 算出した熱伝達率は,サブクール液体窒素の結果と 比較することで SIN₂の冷却特性を明らかとすることとした.

2. 試験装置

Fig.1 に試験装置を示す. 肉眼でも観察を行うためガラス 製のデュワを用い, その内部にマンガニン線をスタイキャスト で固定した FRP 製の円筒状のヒータを設置した. ヒータは定 電流源より電力を供給した. 温度計は K 型熱電対を用い, ヒ ータ内に上下に5ヶ所設置し, 流体温度測定用には対流境界 層より離した距離に, ヒータ内温度計と同じ高さに5ヶ所設置 した.

Fig.1 Measurement system for natural convection test

3. 試験方法

試験は、液体窒素をデュワ注入後、デュワの冷却を兼ねて 最初に熱侵入量を測定する.その後、Freeze-Thaw 法により 液体窒素温度を下げ、三重点到達後に攪拌器を起動させて SIN₂を生成する.生成終了後,攪拌器を止め固体窒素の沈 降を待ってヒータに電流を印加して、その時のヒータ温度、流 体温度の計測を行った.試験中の様子をFig.2 に示す.

Fig.2 Image of the heater during experiment

4. 試験結果

Fig.3 に試験中の最も下のヒータ温度と流体温度の例を示す.温度は試験前に沸点と三重点で補正している.

印加とともにヒータ温度は上昇するが、周囲に固体窒素が 存在する限り流体温度は融点を保ち、ヒータ温度との温度差 も一定に保たれる.周囲から固体窒素が無くなるとヒータ温度 および流体温度は一定の温度差を保ちながら上昇した.

Fig.3 A result of temperature measurement

試験の局所熱伝達率h」は下式より算出した.

$$h_{I} = Q/(I_{W} - I_{f})$$

ここで, h_i :局所熱伝達率[W/(m²·K)], Q:加熱量[W/m²], T_w :ヒータ温度[K], T_t :流体温度[K]

加熱量 Qはヒータ温度変化による影響を補正している.

試験はSIN₂とサブクール液体窒素(LN₂)で行い,局所熱伝 達率を比較した.試験結果の一例をTable1に示す.

Fable1 Local heat tra	ansfer coefficients	in (SIN ₂ and	LN_2
-----------------------	---------------------	------	----------------------	--------

Measurement positions from bottom of heater unit [mm]	local heat transfer coefficients [W/(m ² ·K)]		
	SIN ₂	LN_2	
8	466	418	
24	320	277	
40	300	274	
56	249	229	
72	249	221	

試験の結果, SIN₂存在下での局所熱伝達率は LN₂のそれと同等であることを確認した.

5. 謝辞

本研究は独立行政法人産業技術総合研究所の淵野氏に 試験や装置の貸与などで大変なご尽力をいただいた.ここに あらためて謝意を表します.

本研究は,独立行政法人新エネルギー・産業技術総合開 発機構(NEDO)のプロジェクト「イットリウム系超電導電力機器 技術開発」の継続研究として実施したものである.

参考文献

 M. Ikeuchi, et al.: Abstract of CSJ Conference, Vol. 81 (2009) p.58

スラッシュ窒素用静電容量型固相率計の研究

Investigations on capacitance-type densimeter for Slush Nitrogen

大西 宗太郎, 野口 真孝, <u>武田 実</u>(神戸大学);李 潤錫, 池内 正充, 矢口 広晴(前川製作所) ONISHI Sotaro, NOGUCHI Masataka, <u>TAKEDA Minoru</u> (Kobe Univ.); LEE Yoonseok, IKEUCHI Masamitsu, YAGUCHI Hiroharu (Mayekawa Mfg. Co., Ltd.) E-mail: takeda@maritime.kobe-u.ac.jp

1. はじめに

スラッシュ窒素(SLN₂)は液体窒素(LN₂)と窒素固体粒 (SN₂粒)からなる固液二相の極低温流体であり、超伝導ケー ブル等の新しい冷媒として注目されている。SLN₂の液体中の 固体の質量割合である固相率が高いと搬送時に管閉塞が起 こり、SLN₂の熱流動特性が著しく低下する。このため、固相率 の研究が重視され静電容量型固相率計(密度計)[1]の研究 が行われている。

本研究室では、SLN2の生成が比較的容易なFreeze-Thaw 法に注目して、固相率計の性能改善に関する研究[2]を行っ ている。SLN2 搬送特性における流れ場の安定性を考慮する と、固相率は 20%以下がよいことが報告されている。この場合、 電極間の SN2 粒の分布のばらつきが固相率測定値に影響を 与えると考えられるが、よくわかっていない。そこで、電極間へ の SN2 粒の侵入しやすさ(①)、測定値への分布のばらつきを 少なくする形状(②)、コンパクトかつ測定感度が大きいこと (③)の三つの条件に着目して、三種類の固相率計を考案し た。本研究では、①~③の条件を満たす固相率計として同軸 二重円筒型、同軸三重円筒型固相率計を、また①、③の条 件を満たす固相率計として歯車型固相率計を作製し、各固 相率計の性能評価を行った。

2. 実験装置及び実験方法

本実験では、三つの静電容量型固相率計(密度計)を使用した。歯車型固相率計(Fig.1(a)参照)は、合計12枚の正極 と負極の平板電極を、電極固定用の溝が等間隔に彫ってあ る GFRP パイプとロッドの間に交互に挿入したものである。同 軸二重円筒型固相率計と同軸三重円筒型固相率計 (Fig.1(b)参照)は、ベークライト製のパイプに銅製の円筒電極 を挿入し、固定したものである。

Fig.2に実験装置全体の概略図を示す。本実験ではガラス デュワー内のLN₂を真空ポンプ(1500 L/min)で真空引きし、 SN₂を生成後、真空引きを止めて沈殿したSN₂を底部に設置 してある撹拌翼で粉々に砕き、LN₂と混ぜ合わせた (Freeze-Thaw法)。この方法によりSLN₂の生成を終えてから、 0%になるまでの固相率を各固相率計で計測した。真空排気 量やガラスデュワーへの侵入熱量などから真空引き時間を決 定し、固相率が20%以下になるようにセットした。また、SLN₂ 生成時の撹拌翼の回転数は、粒径の小さいSN₂粒が生成さ れるように120~140 rpmとし、生成完了後の回転数は60 rpm に統一した。

Fig.1 Gear-type densimeter (a) and coaxial triple cylinder-type densimeter (b).

Fig.2 Measurement system.

Fig.3 Time chart of solid mass fraction of coaxial triple cylinder-type densimeter with calculation.

3. 実験結果と考察

Fig.3 に同軸三重円筒型固相率計で計測した固相率とデ ユワー内の液面変化より計算で求めた固相率の時間変化を 比較した図を示す。計測値と計算値はともに時間の経過ととも に減少しており、両者の差は数%であった。この原因は主に、 デュワー内の撹拌に伴うSN2粒の分布の偏りであることがわか った。一方、歯車型固相率計では、時間が経過して固相率が 約 10%付近になると急激に計測値が減少するのが確認され た。この原因として、固相率が低くなると SN2粒が電極間距離 の大きい外周側を通りやすくなり、内周側を通る場合に比べ て計測値が小さくなったことが考えられる。詳細は、学会で報 告する。

- K. Ohira and K. Nakamachi: JSME International Journal Series B, Vol.43, No.2, (2000) pp. 162-170.
- S. Onishi, et al.: Abstracts of CSSJ Conference, Vol. 88 (2013) p. 227.

自然対流における液体水素膜沸騰熱伝達特性

Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

<u>堀江 裕輝</u>, 松澤 崇之, 米田 和也, 塩津 正博, 白井康之(京大); 達本 衡輝 (原子力機構); 成尾 芳博, 小林 弘明, 稲谷 芳文(JAXA) <u>HORIE Yuki</u>, MATSUZAWA Takayuki, YONEDA Kazuya, SHIOTSU Masahiro, SHIRAI Yasuyuki(Kyoto-Univ.); TATSUMOTO Hideki (JAEA); NARUO Yoshihiro, KOBAYASHI Hiroaki, INATANI Yoshifumi (JAXA) E-mail: horie@pe.energy.kyoto-u.ac.jp

1. はじめに

液体水素冷却超電導機器を安全に設計するために、液体 水素の膜沸騰熱伝達特性を知ることは重要である。水平支持 した電流加熱 PtCo 線を液体水素で浸漬冷却し、自然対流 における膜沸騰熱伝達を圧力、液温を変えて測定した。本稿 では測定した膜沸騰状態での熱流束と表示式との比較結果 について報告する。

2. 試験体

実験装置や実験方法の詳細はすでに報告した[1]ので省略する。試験体は直径 d=1.2 mm,長さ L=101.8 mm のPtCo線を水平支持した。この試験体を直流通電加熱して、 電気抵抗変化から試験体平均温度を測定した。試験体表面 温度は、測定した試験体平均温度と熱流束から半径方向の 熱伝導式を解いて求めた。

3. 実験結果と考察

実験は0.1~1.1 MPaの圧力下、飽和およびサブクール状態で行った。それぞれの圧力、液温下で加熱電流をゆっくり 連続的に上昇させて試験体温度を400 K 程度上昇させ、そ の後ゆっくり通電電流を下降させて膜沸騰熱伝達特性を測定 した。

Fig.1 に測定した自然対流沸騰曲線の代表例を示す。縦軸は熱流束q、横軸は試験体表面温度の液温からの上昇分 ΔT_L である。非沸騰領域の熱伝達は McAdams が求めた自然対流の表示式[2]と良く一致する。試験体表面温度が飽和温度を超えると核沸騰が始まり、核沸騰限界に到達すると膜沸騰領域へのジャンプが確認された。

Fig.2 に種々の圧力の飽和状態における膜沸騰熱伝達特 性を示す。縦軸は熱伝達係数 h、横軸は試験体表面温度の 飽和温度からの上昇分 ΔT_{sat} である。一定圧力では、 ΔT_{sat} = 約 250 K 以上になると熱伝達係数はほぼ一定になる。また一 定の ΔT_{sat} では、圧力が大きくなるほど膜沸騰熱伝達係数は 大きい。

Fig.3 に圧力 1.1 MPa の熱伝達特性をサブクール度をパラ メータとして示す。熱伝達係数はサブクール度が大きいほど 大きい。 0.4, 0.7 MPa の圧力下でも同様な結果となった。

櫻井らは種々の液体の実験結果に基づき2流体モデルの 解析解を修正した水平円柱膜沸騰伝達の一般的表示式を提示している[3]。Fig.2とFig.3に破線でこの表示式を示す。実 験結果は表示式と良く一致しており、自然対流における液体 水素膜沸騰熱伝達特性はこの式で表せることが分かった。

参考文献

- Y. Shirai, et al.: Abstracts of CSJ Conference, Vol.81 (2009) p.64
- W.H. McAdams: Heat Transmission third edition, McGraw-Hill Book Co.(1954)
- A. Sakurai, M. Shiotsu, and K. Hata, Trans ASME, Series C, vol.223(1990), pp430–440

Fig.1 Typical heat transfer curve in natural convection at the pressure of 1.1 MPa and subcooling of 11 K.

Fig.2 Saturated film boiling heat transfer coefficient against surface superheat with pressure as a parameter.

Fig.3 Film boiling heat transfer coefficient against surface superheat with subcooling as a parameter.

液体水素の強制流動下における過渡熱伝達 Transient heat transfer from a wire inserted into a vertically-mounted pipe to a forced flow of liquid hydrogen.

達本 衡輝(原子力機構);白井 康之,塩津 正博,堀江 裕輝,米田 和也,松澤 崇之(京大);

小林 弘明,成尾 芳博,稲谷 芳文(JAXA)

<u>TATSUMOTO Hideki</u> (JAEA); SHIRAI Yasuyuki,SHIOTSU Masahiro, KOBAYASHI Hiroto,YOSHIKAWA Kotaro, HORIE Yuuki, YONEDA Kazuya, MATSUZAWA Takayuki (Kyoto Univ.); KOBAYASHI Hiroaki, NARUO Yoshihiro, INATANI Yoshifumi (JAXA) E-mail: tatumoto@post.j-parc.jp

1. はじめに

液体水素は、高い熱伝導率や比熱を有するため、高温超 伝導機器の冷媒として期待されている。高温超伝導導体の 冷却設計や安定性評価に必要不可欠な液体水素の強制流 動下における過渡熱伝達特性を把握するために、本研究で は、CICC 導体のような液体水素の強制流動による直接冷却 方式の超伝導導体を模擬した供試体を用いて、指数関数状 に上昇発熱を与えた場合の液体水素の強制対流過渡熱伝 達特性を測定した。

2. 供試体

装置や実験方法の詳細は既に報告している[1]。内径 8 mm、全長が 120 mm の FRP 製流路の中心軸に沿って,直径(d) 1.2mm、加熱長さ 120 mm の PtCo 製ワイヤヒーターを設置した。この供試体は、実験槽内のトランスファーチューブの一端に接続し、垂直に支持した。この PtCo ワイヤを指数関数状の発熱率 $Q = Q_0 exp(t/t)$ で直流電流加熱し、上昇周期 τ を変化させて過渡熱伝達特性を測定した。発熱体平均温度は、PtCo ヒーターの電気抵抗変化から測定し、発熱体表面温度は、平均温度の垂直軸方向分布を無視して、その平均温度と発熱率から半径方向の熱伝導方程式を解いて求めた。

3. 実験結果と考察

実験は系圧力(P)が0.7 MPaで入口液温(T_{in})が20.9 K(サブク ール度が8Kに相当)の条件下で、流速が0.8~5.6 m/sの範囲 の液体水素強制流動下における過渡熱伝達特性を測定した。

流速が0.8 m/sと5.5 m/sの場合の液体水素の強制対流過 渡熱伝達特性を Fig. 1 に示す。横軸は発熱体表面温度(Tw) の入口温度からの上昇分 ($\Delta T_L = T_w - T_{in}$) である。 τ が大 きい(加熱速度がゆっくり)場合、非沸騰域の熱伝達は、 Dittus-Boelter 式[2]の予測値と良く一致しているが、τが小 さくなると過渡熱伝導の寄与が大きくなり、Dittus-Boelter 式より大きくなる。同じ上昇周期の場合、流速が速い方が、 熱伝導の影響は小さく、その影響が現れる上昇周期は小さ い。一方、核沸騰熱伝達はほとんど上昇周期の影響はみら れないが、DNB(Departure from Nucleate Boiling)熱流束 (q_{DNB}) は、 τ が小さくなるにつれて大きくなっている。 Fig.2 に DNB 熱流束と τ の関係を示す。 $\tau > 1s$ では、 DNB 熱 流束はほぼ一定であり、定常状態とみなせる。しかし。 τの減少 とともに、DNB 熱流束は増加し、 t が同じ場合、流速が速い方が DNB は大きい。 過渡状態における DNB 熱流束 (q_{DNB,t}) を定常 DNB 熱流束 (q_{DNB,s}) からの上昇分 (q_{DNB,t} - q_{DNB,s}) として整 理した結果を Fig.3 に示す。 $q_{DNB,t} - q_{DNB,s}$ は、流速にほとんど 依存しない τ だけの関数で表されることがわかった。

謝辞 この研究の一部は、JSPS 科研費(25289047)の補助を 受けた。

- H. Tatsumoto, et al.: Abstracts of CSJ Conference, Vol. 81 (2009) p.65
- [2] Van Sciver S., Helium Cryogenics, (1986) 231-238.

Fig.1 Typical of transient heat transfer in forced flow of liquid hydrogen.

Fig.2 DNB heat flux versus exponential period with flow velocity as parameter.

Fig.3 Effect of exponential period on increment of transient DNB heat flux from steady-state DNB heat flux.

液体水素流路中心の円柱発熱体における膜沸騰熱伝達 Film Boiling Heat Transfer from a Cylinder to Liquid Hydrogen Flowing in Annulus

<u>塩津 正博</u>, 白井 康之, 大浦 洋祐, 堀江 裕輝, 米田 和也(京大);達本 衡輝(原子力機構);畑 幸一(京大); 小林 弘明, 成尾 芳博, 稲谷 芳文(JAXA)

<u>SHIOTSU Masahiro</u>, SHIRAI Yasuyuki, OURA Yosuke, HORIE Hiroki, YONEDA Kazuya (Kyoto Univ.);

TATSUMOTO Hideki (JAEA); HATA Koichi (Kyoto Univ.); KOBAYASHI Hiroaki, NARUO Yoshihiro, INATANI Hirohumi(JAXA) E-mail: shiotsu@pe.energy.kyoto-u.ac.jp

1. はじめに

狭いギャップの流路内における膜沸騰熱伝達の理解は、液体水素冷却超電導機器のクエンチ時の安全解析や設計に重要である。本報では、内径8 mmの管状液体水素流路中心に支持した1.2 mm 径 PtCo 合金発熱体における膜沸騰熱伝達を圧力0.4 MPaから1.1 MPa,サブクール度0から11K,流速0.3から7 m/sの範囲で測定し、各パラメータの影響を明らかにした。

2. 試験発熱体

実験装置や実験方法の詳 細は既に報告した[1]ので 省略する。試験発熱体は、直 径 1.2 mm,長さ 120 mmの PtCo(0.5 wt.%)合金線で、 Fig.1 に示すように FRPブロッ クを貫通する内径 8.0 mmの 流路中心に支持されている。 このブロックを試験槽内トラン スファーチューブー端に垂直 に支持し発熱体を直流電流 加熱した。電気抵抗変化から 発熱体平均温度を測定した。

Fig.1 Test heater block.

3. 実験結果と考察

発熱率を指数関数状($Q = Q_{c}e^{t/\tau}$) に $\tau = 10.0$ s で発熱 体温度 400 K 近傍まで上昇させ、以後 $\tau = -10.0$ s で減少さ せて極小熱流束 q_{min} までの膜沸騰熱伝達を測定した。流速 が大きいとDNB熱流束 q_{DNB} が大きくなり膜沸騰領域の非常に 高い温度までジャンプする。ここでは、Fig.2 に示すように低い 流速(0.9 m/s)で q_{DNB} から膜沸騰域までジャンプさせた後、流 速を目標値(7.23 m/s)まで上げながら加熱を続けることで極端 な過熱を防いだ。

Fig.3 は圧力 400 kPa 飽和状態の膜沸騰熱伝達係数 $h = q / \Delta T_{sat}$ と過熱度 ΔT_{sat} の関係を流速をパラメータとして示 す。 ΔT_{sat} が 80 K 以下になると膜厚が薄くなり急激に h が大き くなるが、それ以上では ΔT_{sat} 依存性は小さい。流速には強く 依存し、流速上昇と共に h が大きくなる。

Fig.4 は、圧力 400 kPa でサブクール度 $\Delta T_{sub} = 5$ K の場合 である。 $h \circ \Delta T_{sut}$ 依存性及び流速依存性の傾向は飽和の場 合と類似である。 $h \circ decore for the formula of the formula$

Fig.5 は、 $\Delta T_{sat} = 200$ K におけるhの値を流速に対して圧 カやサブクール度をパラメータとして示す。圧力とサブクール 度が大きいと流速依存性が強くなり、例えば P=1100 kPa, $\Delta T_{sub} = 11$ K の場合 P=400 kPa, $\Delta T_{sub} = 5$ K の場合より70 % 近く大きな熱伝達係数となっている。

今回は、予備的段階で限られた範囲の実験しか行っていないため詳細な検討は難しいが、今後発熱体直径や長さ、流路径を変えて、圧力。サブクール度、流速を変えた系統的な実験を行い、データベースを確立するとともに表示式を導出することを目指している。

^[1] Shirai et al.: Abstracts of CSJ Conference, Vol.81 (2009)

Fig. 3. Film boiling heat transfer coefficient versus wall superheat at P=400 kPa saturated condition with flow velocity as a parameter.

Fig. 4. Film boiling heat transfer coefficient at P=400 kPa and subcooling of 5 K with flow velocity as a parameter.

Fig. 5 Film boiling heat transfer coefficient at $\Delta T_{sat} = 200$ K for various pressure and subcooling.

液体水素冷却における矩形ダクト内の片側平板の強制対流熱伝達特性 Forced Flow Boiling Heat Transfer Properties of Liquid Hydrogen for Manganin Plate Pasted on One Side of a Rectangular Duct

米田 和也, 白井 康之, 堀江 裕輝, 松澤 崇之, 茂田 宏樹, 塩津 正博(京大);達本 衝輝(原子力機構); 畑 孝一(京大);成尾 芳博, 小林 弘明, 稲谷 芳史(JAXA) <u>YONEDA Kazuya</u>, SHIRAI Yasuyuki, HORIE Yuki, MATSUZAWA Takayuki, SHIGETA Hiroki, SHIOTSU Masahiro (Kyoto Univ.); TATSUMOTO Hideki (JAEA); HATA Koichi (Kyoto Univ.); NARUO Yoshihiro, KOBAYASHI Hiroaki, INATANI Yoshifumi (JAXA) Email: yoneda@pe.energy.kyoto-u.ac.jp

1. 序論

液体水素冷却下での超電導機器の設計には液体水素の 熱伝達特性および強制対流の影響を把握する必要がある。 過去の研究[1]で円管の発熱体における強制対流熱伝達試 験を行った。今回はテープ線材、矩形の流路を想定し、FRP で作成した矩形ダクトの片側にマンガニン平板を設置した。 発熱体を通電加熱し、その強制対流熱伝達特性を調べた。

2. 試験体

Fig.1 のように、FRP ブロックで作成した長さ 262mm、幅 10mm、高さ 4.25mm の矩形ダクトの片側に、長さ 120mm、幅 10mm のマンガニン平板を設置した。流入口から流路が次第 に矩形になるように設計したが、流れを安定させるため、 69mm の助走距離を設けた。

Fig.1 Schematic of the test plate heater

3. 実験方法

Fig.2 に実験装置の略図を示す。発熱体は実験槽内のトランスファーチューブ端に接続した。実験槽を水素ガスで加圧することで実験槽からサブタンクへ強制的に対流を起こした。流速は実験槽の重力変化から計測し、流速が安定したところで発熱体を通電加熱した。入熱は $Q_{in} = Q_0 \times \exp(t/\tau)$ ($\tau = 5$ s)のように指数関数的に与えた。発熱体の温度は事前に準備した抵抗温度曲線から算出した。実験槽圧力、サブクール度、流速をそれぞれ変えて実験を行った。

Fig.2 Schematic of the experimental system

4. 実験結果

Fig.3 に得られた熱伝達特性の代表例を、流速をパラメータ として示す。縦軸は熱流束、横軸は発熱体の温度上昇であり、 実線は実験値、破線は Dittus-Boelter 式である。同式におけ る流路の直径には水力的等価直径を用いた。非沸騰領域で は Dittus-Boelter 式に沿って熱流束が上昇している。その後 飽和温度に達して核沸騰が起こり始め、DNB 熱流束に達した 後温度が急上昇し膜沸騰へと遷移している。

Fig.3 Example of Boiling curves of the test plate heater for various flow velocity

次に、Fig.4 に流速と DNB 熱流束の関係を示す。流速が大きいほど、またサブクール度が大きいほど、DNB 熱流束は大きくなった。過去の研究[1]で得られた等価直径と長さの近い 円管発熱体の結果と比較すると、今回の平板発熱体の方が DNB 熱流束は小さいことがわかる。

Fig.4 DNB heat flux versus flow velocity of the plate and tube heaters at the pressure of 0.7 MPa for various subcoolings

5. まとめ

- 1.非沸騰領域はDittus-Boelter式で記述できる
- 2.流速、サブクール度が大きいほどDNB熱流束は大きくなる
- 3. 寸法の近い円管発熱体の結果と比較すると、今回の平板 発熱体の方がDNB熱流束は小さい

参考文献

 Y.Shirai, et al.: Advances in Cryogenic Engineering, vol.57 (2012) p1067-1074

自己焼結法 *ex-situ* MgB₂ バルクにおける原料粉末作製条件の検討 Studies on preparing condition of starting powders for *ex-situ* MgB₂ bulks by self-sintering method

<u>水谷 俊介</u> (東大院工);山本 明保 (東大院工・JST さきがけ);下山 淳一, 荻野 拓, 岸尾 光二 (東大院工); <u>MIZUTANI Shunsuke</u> (The University of Tokyo); YAMAMOTO Akiyasu (The University of Tokyo, JST-PRESTO); SHIMOYAMA Jun-ichi, OGINO Hiraku, KISHIO Kohji (The University of Tokyo) E-mail: 6122075513@mail.ecc.u-tokyo.ac.jp

1. はじめに

MgB₂は金属系超伝導体の中で最高の T_c(~40 K)を持ち、 液体へリウムフリーの冷凍機冷却による 15-30 K での応用が 期待されている。MgB₂ 多結晶材料の一般的な作製方法であ る ex-situ 法は、高密度で均一な組織を比較的容易に得られ るが、結晶粒間の結合が弱く、有効な電流パスの割合である コネクティビティが低いことが課題であった。そのため、高J_c化 に向けては粒間結合の強化によるコネクティビティの向上が 不可欠である。我々は ex-situ 法において高温熱処理や原料 粉末中の不純物の低減、ボールミル粉砕などの原料粉末の 精製により、MgB₂ の自己焼結が促進され、粒間結合性が著 しく改善することを報告してきた[1-4]。

ex-situ 法 MgB₂ バルクの自己焼結挙動と超伝導特性は、 原料 MgB₂粉末の影響を強く受ける。本研究では原料 MgB₂ 粉末の作製条件の検討による ex-situ 法 MgB₂ バルクの超伝 導特性の改善を目的とし、原料 B 粉末や作製条件を変えて 種々の高純度 MgB₂粉末を作製し、それぞれの原料 MgB₂粉 末を用いて常圧下で自己焼結法 ex-situ MgB₂ バルクを合成 した。得られた試料について微細組織観察、コネクティビティ と超伝導特性の評価を行った。

2. 実験方法

原料 MgB₂ 粉末は、酸素濃度 0.1 ppm 以下の不活性雰囲 気グローブボックス中で、Mg 粉末と B 粉末(99%, <45 μm、 あるいは 98.5%, <250 nm)の混合粉末を SUS316 管に充填 し、一軸プレス後に両端を封じ、Ar 気流中で 900°C, 2 h ある いは 600°C, 24 h の熱処理を行うことにより得た。

作製した原料 MgB₂を不活性雰囲気下で乳鉢によって粉砕し、SUS316 管に充填し、一軸プレス後に両端を封じ、テープ状に成型した。これらを石英封管内で 700-900°C, 1-72 hの様々な条件で焼結し、ex-situ 法 MgB₂ バルクを得た。得られた試料に対して、粉末 X 線回折(XRD)により構成相を、SQUID 磁束計を用いた磁化率測定により超伝導特性を、交流四端子法による抵抗率測定からコネクティビティを評価し、FE-SEM により微細組織観察を行った。

3. 結果と考察

900°C, 24 h 焼結をした ex-situ 法 MgB₂ バルクの断面研磨 面の二次電子像を Fig. 1 に示す。900°C で 2 h 熱処理した原 料粉末を用いた場合(Fig.1 (a), (b))、より微細な B 粉末の使用 により焼結後の MgB₂の粒径も小さくなることが分かった。また 同じ B 粉末を用いて異なる温度(900°C, 2 h あるいは 600°C, 24 h)で熱処理した場合(Fig.1(b), (c))、低温での熱処理により 数百ナノメートルの微細な MgB₂ 粒が得られ、さらに、組織的 均一性がより高くなった。以上の結果から、ex-situ 法 MgB₂ バ ルクにおける MgB₂ の粒径と粒間結合性は、B 粉末の粒径、 及び原料作製条件に強く依存することが分かる。

900°C,24h焼結試料のJ。の磁場依存性をFig.2に、電気抵抗率の温度依存性をFig.3に示す。MgB2粒径が小さい試料ほどJ。は大きく向上する傾向が見られた。一方、コネクティビティと RRR 値は作製条件に依存しており、コネクティビティは粗大なB粉末を用いた試料の26%から、微細なB粉末を

Fig. 1 Secondary electron images of *ex-situ* MgB₂ bulks sintered at 900°C for 24h by using different starting MgB₂ powders; (a) 900°C, 2 h (B size <45 μ m), (b) 900°C, 2 h (B size <250 nm), (c) 600°C, 24 h (B size <250 nm).

Fig. 2 Magnetic field dependence of J_c at 20 K for *ex-situ* MgB₂ bulks.

Fig. 3 Temperature dependence of electrical resistivity for *ex-situ* MgB₂ bulks.

用いた試料で35%以上に向上した。またRRR値は、微細なB 粉末を用い900 °C,2h熱処理により作製した原料を用い た試料の6.4から3.8,3.6に低下するのにともない、磁場中に おけるJ。が系統的に改善した。同じ大きさのB粉末を用いた 試料間の比較から、原料粉末を低温熱処理によって作製す ることで、粒径が小さく結晶性が低い原料MgB2粉末が得られ、 これが*ex-situ*法MgB2バルクのコネクティビティ、RRR値の改 善とJ。向上に寄与したと考えられる。

参考文献

- 1. A. Yamamoto et al.: Jpn. J. Appl. Phys. 25, 010105 (2012).
- 2. H. Tanaka et al.: Supercond. Sci. Technol. 25, 115022 (2012).
- 3. S. Mizutani *et al.*: Supercond. Sci. Technol.27, 044012 (2014).
- S. Mizutani *et al.*: Abstracts of CSSJ Conference, Vol. 88 (2013) p.18

— 194 —

多環芳香族炭化水素 Coronene (C₂₄H₁₂)添加した MgB₂ 超伝導線材の微細組織及び 臨界電流密度

Microstructure and critical current density of Coronene $(C_{24}H_{12})$ added MgB₂ wires

<u>葉術軍</u>,張 雲超,松本 明善,戸叶 一正,熊倉 浩明(物質・材料研究機構) <u>YE ShuJun</u>, ZHANG Yunchao, MATSUMOTO Akiyoshi, TOGANO Kazumasa, KUMAKURA Hiroaki (NIMS)

E-mail: YE.Shujun@nims.go.jp

1. はじめに

CコートしたナノサイズのB 粉末を使った内部拡散法 (internal Mg diffusion, IMD) MgB₂線材では、10T及び4.2K で10万A/cm²を超える臨界電流密度(*J*_c)、ならびに1万 A/cm²を超えるエンジニアリング*J*_c(*J*_c)が得られている [1,2]。我々はこの内部拡散法による37芯MgB₂線材の作製 [3]、*J*_c増加のためにMgB₂断面積を増やすことができるハ イブリット方法の開発[4]、及び最近では長尺線材の作製 なども進めており、このIMD法によるMgB₂線材の実用化 も現実味を帯びてきている。

MgB₂線材では、いずれの作製方法でも、BのC置換が 磁場中での J_cを上げる最も有効な手法と考えられる。ナ ノサイズのC粒子や SiC などの炭素化合物の添加による MgB₂の臨界電流特性の向上については報告がたくさんあ るが、ナノ粒子は凝集しやすく MgB₂線材の微細組織及び 臨界電流特性は不均一になりがちである[5]。

本研究では、多環芳香族炭化水素 Coronene $(C_{24}H_{12})$ を C添加ソースとして、IMD 法及び powder in tube (PIT)法に より MgB₂線材を作製し、臨界電流特性及び組織構造を調 べた。

2. 実験

PIT 線材では外径 6mm、内径 3.5mm の純鉄チューブの中 に、Mg 粉末、B 粉末、及び 10% (C:B の原子比,以下同じ) $C_{24}H_{12}$ の混合物を充填した後、溝ロール及び線引きにより、 1.0mm 径の線材を作製した。また、比較のために無添加線材 ならびに 10mol%SiC 添加した線材も作製した。PIT 線材は全 て 700℃で 1 時間熱処理した。

IMD線材は、外径 6mm、内径 4mmの純鉄チューブの中心 に径 2mmの Mg 棒を置いて、周りは B 粉末及び 5% $C_{24}H_{12}$ 添 加した B 粉末を充填して、上記 PIT 法と同様に加工して 0.6mm 径の線材を作製した。Dimethylbenzene 処理した 4%C コーテイングしたナノサイズ B 粉末 (SMI(4%C)+D)を用いた 線材[2]、10%SiC 添加した線材、及び無添加線材も作製し た。また、MgB₂ 断面積を増やすため、Mg 棒を径 1.8mm に減少させた 5% $C_{24}H_{12}$ 添加線材も作製した(5%C #)。IMD 法線材は全て 670℃で 6 時間熱処理した。

3. 実験結果及び考察

Fig. 1では、10%C₂₄H₁₂添加したPIT法によるMgB₂線材の 4.2Kによる J_c – B曲線を示した。10Tでは、1.8x10⁴ A/cm²の J_c が得られ、C₂₄H₁₂添加により線材の J_c が大幅に上昇した。 C₂₄H₁₂添加はSiC添加より有効であることがわかる。 J_c – B曲線 のSlope (絶対値)はSiC添加より小さく、C置換量はSiC添加よ り多いことが判った。

Fig. 2では、拡散法によるMgB₂線材の4.2Kによる J_c -B曲 線を示した。5%C₂₄H₁₂添加したMgB₂線材はSMI+D線材と同 レベルの J_c が得られた。MgB₂面積を増やした5%C # では 1.12x10⁴ A/cm² の J_c が得られた。これらの J_c と J_c は、今まで最 高の J_c と J_c を示すcarbon-coated nano-sized B powder(米国、 SMI社)を使ったMgB₂線材[1, 2]と競争できる一方、C₂₄H₁₂添 加したBは安価、作製簡便、性能安定などの利点がある。 これらの $C_{24}H_{12}$ を添加した MgB_2 線材の組成と微細組織の 分析結果によると、 $C_{24}H_{12}$ における有効なCソースがBサイトの カーボン置換を引き起こし、これが J_c を上げる最も重要な要因 とみられる。 $J_c - B$ のSlopeからもそれがうかがえる。

C₂₄H₁₂は:(1)多環芳香族炭化水素として、96wt%のCを有 すること、(2)C₂₄H₁₂の分解温度は600℃くらい[6]で、MgとBの 反応温度に近いので、活性なCが供給できること、また(3) 438℃くらいで融体になって、熱処理の昇温時にB表面に均 ーにコートできること、などにより、MgB₂線材の有効なCソース となる。これらが本研究のPIT及びIMD法によるMgB₂線材で高 い臨界電流特性が得られた主たる原因と考えられる。

Fig.1 J_c -B curves of PIT-processed MgB₂ wires

Fig.2 J_c -B curves of IMD-processed MgB₂ wires

参考文献

- [1] Li G Z et al.: Supercond. Sci. Technol. 25 (2012) 115023
- [2] Ye S J et al.: Supercond. Sci. Technol. 26 (2013) 125003
- [3] Ye S J et al.: Supercond. Sci. Technol. 26 (2013) 105027
- [4] Ye S J et al.: Supercond. Sci. Technol. 27 (2014) 055017
- [5] 東川 甲平ら: 第 87 回(2013 春) 低温工学・超伝導学会 講演概要集 P98
- [6] Talyzin A et al.: The Journal of Physical Chemistry 115 (2011) 13207

(謝辞:本研究は JST 先端的低炭素化技術開発事業 (ALCA)の助成を受けた。)

— 195 —

直接合成 MgB₄を前駆体とした *in-situ* 法 MgB₂ バルクの作製 Fabrication of *in-situ* MgB₂ bulks using directly-synthesized MgB₄ precursor

<u>久良 智明</u>(東大工);山本 明保(東大工・JST さきがけ);下山 淳一, 荻野 拓, 岸尾 光二(東大工) <u>KURO Tomoaki</u>(The University of Tokyo); YAMAMOTO Akiyasu (The University of Tokyo, JST-PRESTO); SHIMOYAMA Jun-ichi, OGINO Hiraku, KISHIO Kohji (The University of Tokyo) E-mail: 8867704909@mail.ecc.u-tokyo.ac.jp

1. はじめに

MgB₂は金属系超伝導体の中で最高の T_c (~40 K)を持ち、 液体へリウムフリーでの冷凍機冷却による15-30 K における応 用が期待されている。MgB₂ 多結晶体の一般的な作製法であ る *in-situ*法は結晶粒間の結合が強く、比較的高い J_c が得られ る一方で、熱処理前に Mg が占有した部分が焼成後に空隙と なることから、相対密度(=充填率(P))が原理的に低く、 J_c とコ ネクティビティ(K)の抑制につながっていることが報告されてき た[1]。

我々は、*in-situ* 法において B の代わりに MgB₄前駆体を用 いる反応法(0.5Mg+0.5MgB₄→MgB₂)により従来の *in-situ* 法と 比較して高密度の試料が得られることを報告してきた[2]。本 研究では高 J_c 化を目的とし、直接合成 MgB₄(Mg+4B→MgB₄) による MgB₄ 前駆体の再現性の良い合成条件を検討し、次に 不純物 MgO を低減するプロセスを適用することで MgB₄ 前駆 体を用いた高密度かつ高純度な *in-situ* 法 MgB₂ バルクの合 成を試みた。得られた試料の構成相、微細組織と超伝導特性 について、従来の *in-situ* 法及び熱分解法 (MgB₂ → 0.5MgB₄+0.5Mg)により得た MgB₄ 前駆体を用いて作製した MgB₂ バルクとの比較検討を行った。

2. 実験方法

4 種の製法(①~④)により MgB4 前駆体を作製した。①は MgB2の熱分解、②、③、④はMgとBからの直接合成によるも のである。出発原料として②では微細な Mg 粒(#325)を、③で は比表面積の小さい Mg 粒(#20)を用いた。直接合成法では、 MgとBを1:4のモル比で混合した粉末を金属管に充填し、-軸プレスによって両端を封じ、真空石英封管中で 1050°C, 24 hの熱処理を行った。また、④では③で得た MgB4粉末を酸処 理後、低圧下で加熱乾燥し不純物除去を行った粉末を用い た。得られた MgB4 前駆体を①,②,③では空気中で、④では Ar 雰囲気下で Mg 粉末と1:1のモル比で混合後、SUS 管に充 填し、一軸プレスによりテープ状に成型し、両端を封じたのち 石英管に真空封入し900°C, 24 hの熱処理を行った。得られ た MgB2 バルク試料について、粉末 X 線回折により構成相の 同定を、SQUID 磁束計による磁化率測定から超伝導特性を、 交流四端子法による電気抵抗率測定からコネクティビティを評 価し、SEM により微細組織を観察した。

3. 結果と考察

Fig. 1 に MgB₄ 前駆体粉末の二次電子像を示す。比表面積 が小さく酸化被膜の少ない Mg の使用(b:製法③)、及び酸処 理(c:製法④)により、(a:製法①)で粒表面にみられた MgO が 低減し、とくに製法④ではほとんど不純物の無い高純度粉末 が得られた。これらを使用して作製した MgB₂ バルクにおいて も MgO 量が低減した。Fig. 2 に MgB₂のコネクティビティと充填 率の関係を示す。試料の充填率は従来の *in-situ* 法バルクが 約 50%であるのに対し、MgB₄ 前駆体を用いたバルクでは 62-65%となり、高密度化に成功した。また、緻密な組織を反映 して従来法よりコネクティビティも上昇し、とくに酸処理を施し た MgB₄ 前駆体(④)を用いて作製した試料は 22%の高いコネク ティビティを持つことがわかった。一連の試料の臨界電流特性 は当日報告する。

参考文献

- [1] A. Yamamoto *et al.*, Supercond. Sci. Technol. 20 (2007) 658–666.
- [2] A. Ito *et al.*, *IEEE Trans. Appl. Supercond.* 23 (2013) 7101005.

Fig. 1 Secondary electron images of MgB_4 precursor powders; (a) process ②, (b) process ③, (c) process ④.

Fig. 2 Relationship between connectivity and packing-factor for *in-situ* MgB₂ bulks.

電子ビーム蒸着法で作製した C ドープ MgB₂ 薄膜の臨界電流特性 Critical current properties in C-doped MgB₂ films fabricated by electron-beam deposition

<u>
堀井 滋</u>, 青木 翔太, 竹原 寛人(京都大); 菅野 周一, 水上 貴彰, 楠 敏明(日立製作所); 土井 俊哉(京都大) <u>HORII Shigeru</u>, AOKI Shota, TAKEHARA Hiroto (Kyoto Univ.); KANNO Shu-ichi, MIZUKAMI Takaaki, KUSUNOKI Toshiaki, (Hitachi Ltd.); DOI Toshiya (Kyoto Univ.) E-mail: horii.shigeru.7e@kyoto-u.ac.jp

1. はじめに

ニホウ化マグネシウム(MgB₂)は、金属系超伝導物質の 中で最高の臨界温度(T_c =39 K)を有している。MgB₂ には、 組成制御が比較的容易であること、構成元素の Mg と B がいずれも資源的に豊富で安価であること、軽い(低密 度)ことなどの特長があり、液体水素や冷凍機を利用し た 20 K 近傍での応用が期待されている。

電子ビーム(EB)蒸着法は、超高真空中で原料を電子ビ ーム照射により蒸発させて、加熱した基板上で薄膜成長 させるプロセスである。この手法で得られる MgB₂薄膜は、 基板面垂直方向に柱状組織をもち、またコネクティビテ ィーが極めて高いことから、高臨界電流密度(J_c)が実現さ れる。当研究グループでは、Al テープ上に作製した MgB₂ 薄膜が 4.2 K・10 T 下で $J_c > 10^6$ A/cm² を示す[1]ことを報 告した。しかし、20 K 近傍では高磁場領域での J_c の低 下が課題となっている。そこで、20 K 近傍での高磁場 J_c の向上を目的とし、ピンニングセンタとして働くとされ ている C [2] をドープした MgB₂ 薄膜のジュラルミン (Du)基板上への作製を試み、これらの超伝導特性および臨 界電流特性を明らかにした。

2. 実験

EB 蒸着法により MgB₂ および C ドープ MgB₂ 薄膜を 作製した。Mg と、B+B₄C を原料とし、これらにそれぞ れ電子ビームを照射し、280°C に加熱した Du 基板上に 10分間蒸着した。ここで、仕込みの C ドープ量(x=C/(B+C)) としてモル比で B: C = 99: 1 (x=0.01), 95: 5 (x=0.05), 90: 10 (x=0.1)となるよう秤量した結晶化ホウ素および B₄C の 混合物を B 側原料として用いた。得られた薄膜試料の化 学組成を ICP 発光分光分析および EDX から決定し、MgB₂ 相の生成および配向性を X 線回折法 (XRD 法) から評価 した。 T_{c} 、 J_{c} 、不可逆磁場については四端子法および磁化 法から決定した。

3. 結果および考察

Table 1 に x=0, 0.01, 0.05, 0.1 試料の ICP 分析, EDX に よる組成分析の結果、およびそれぞれの T_c を示す。ICP 分 析による組成分析の結果、B/Mg 組成比は x=0, 0.01, 0.05, 0.1 でそれぞれ 2.0, 2.1, 1.7, 2.2 となり、x=0.05 試料におい て化学量論組成よりやや Mg 過剰組成となった。また、EDX による組成分析の結果、C/(B+C)組成比は、x=0.01, 0.05, 0.1 においてそれぞれ x^{ana} =0.024, 0.035, 0.084 となった。この結 果は、EB 法による低温下での成膜においても何らかの形で MgB₂ 薄膜内に C が取り込まれていることを意味する。また、 定性的な傾向として、仕込みの C ドープ量の増加とともに MgB₂ 薄膜に含まれる C 量も増加した。

Fig. 1 に、C-free および C-doped MgB₂薄膜の電気抵抗 率の温度依存性を示す。まず、 T_c に着目すると、いずれ の試料も超伝導特性を示すものの、C ドープ量の増加とと もに T_c は減少した。具体的には、x=0,0.01,0.05,0.1 試料 において、それぞれ $T_c=33.0,30.0,30.8,19.0$ K であった。 この結果は、EDX で検出された C の少なくとも一部が MgB_2 内に固溶していることを示唆する。また、電気抵抗 率の温度依存性に着目すると、Cドープ量の増加とともに 金属的挙動から半導体的挙動へと変化し、RRR は C-free 膜における値である 0.66 から、 $x^{ana} = 0.024, 0.035, 0.084$ で それぞれ 0.76、1.32、1.48となり、 x^{ana} ともに増加した。この結 果は $MgB_2 \sim 0$ C の固溶を支持し、数%程度の C ドープが T_c および RRR に大きな影響を与えている。また、HPCVD 法で作製した MgB_2 膜の電気抵抗率の温度依存性に与え る C ドープ効果[3]と比べると顕著な差が見出され、EB 法 では C が効率良く MgB_2 相に固溶することを示唆する結 果となった。

当日は、C-doped MgB₂薄膜の臨界電流密度の磁場依存 性や不可逆磁場についても示すとともに、MgB₂薄膜にお ける C の磁束ピンニング効果について議論する予定であ る。

- 1. 吉原ら,低温工学 47 (2012) 103.
- 2. Dou et al., Appl. Phys. Lett. 81 (2002) 3419.
- 3. Pogrebnyakov *et al.*, IEEE Trans. Appl. Supercond. **15** (2005) 3321.

Table 1	Chemical com	positions and	$T_{\rm c}$ for the C-dope	ed
Ma	B. thin films u	$r_{ith r=0.001}$	0.05 and 0.1	

x	0	0.01	0.05	0.1
B/Mg	2.0	2.1	1.7	2.2
$C/(B+C)$ $(\equiv x^{ana})$	—	0.024	0.035	0.084
<i>T</i> c [K]	33.0	30.0	30.8	19.0

Fig.1 Temperature dependence of resistivities for the C-free and C-doped MgB₂ films.

磁性シース材を有する MgB₂線材の臨界電流値の非通電評価手法 Noncontact Characterization Method for Critical Current of MgB₂ Wires with Magnetic Sheath Materials

<u>東川 甲平,</u> 井上 昌睦, 木須 隆暢 (九大); 松本 明善, 熊倉 浩明 (NIMS);

SUMPTION Michael (Ohio State University); RINDFLEISCH Matthew, TOMSIC Michael (Hyper Tech Research, Incorporated) <u>HIGASHIKAWA Kohei</u>, INOUE Masayoshi, KISS Takanobu (Kyushu Univ.); MATSUMOTO Akiyoshi, KUMAKURA Hiroaki (NIMS); SUMPTION Michael (Ohio State University); RINDFLEISCH Matthew, TOMSIC Michael (Hyper Tech Research, Incorporated) E-mail: kohei@super.ees.kyushu-u.ac.jp

1. はじめに

近年,内部 Mg 拡散法による MgB₂線材の特性向上が著し く^{[1][2]}, MRI 等への応用が視野に入ってきている段階にある。 一方,上記の応用では数テスラ以下での臨界電流(*I*_c)値が重 要な指標となるが,そのような条件下の *I*_c値はかなり高くなって きており,通電法では発熱や測定システムの制限から評価が 困難となっている。また,近年の高特性線材には鉄^[1]や Monel^[2]といった磁性シース材が使用されており,一般的な磁 化法による *I*_c値の定量評価も困難となっている。そこで本研究 では,磁気顕微鏡を用い,磁化された線材周辺の磁界分布を 取得し,それを定量的に表現できる *I*_c値を見つけ出すことで, MgB₂線材の *I*_c値を非通電で評価できる手法を開発した。

2. 方法

評価対象とした試料は、ALCA の国際研究交流事業を通じ て提供を受けた Hyper Tech 社製の MgB₂線材である。その断 面構造を Fig. 1 に示す。シース材には Monel が使用されてお り、内部 Mg 拡散法によって作製されているため、フィラメントは 円筒形状となっている。本線材に対して、走査型ホール素子 顕微鏡 (SHPM)により、様々な外部磁界条件下における線材 直上の磁界分布を取得した^[3]。また、Fig. 1 に示すモデルを用 いた有限要素法による数値解析との比較検討を行った。

3. 結果·考察

外部磁界印加時の実験結果をFig.2に示す。ゼロ磁界中で 線材を5Kに冷却した後に+100mTの外部磁界を印加した際 には、線材直上の磁束密度が大きくなっていることがわかる (Fig. 2 (b))。磁性シース材を持たない線材の場合には外部磁 界を遮蔽するが、本線材では磁性シース材に磁束が集中した ためと考えられる。一方,外部磁界を+400 mT まで増加させた 際には,線材直上の磁束密度は小さくなった(Fig. 2 (c))。これ は, Monel が飽和状態となり磁界がフィラメントに達したことで, フィラメントに遮蔽電流が誘起された結果と考えられる。このよ うに、磁性シース材を有する線材の電磁特性は複雑であり、-般的な磁化法による Ic 値の評価が困難となっている。そこで, まずシース材の物性のみを評価すべく,臨界温度直上での検 討を行った。その結果, Monel の比透磁率を 10, 飽和磁束密 度を 350 mT とすると,実験結果を定量的に表現できることが わかった(Fig. 2 (d)(e))。これにより、未知数は I_c 値のみとなり、 5 K における残留磁界分布から Ic 値を評価した結果を Fig. 3 に示す。上記シース材の物性に加え、Ic値を500Aとした際に、 実験結果を定量的に表現できた(Fig. 3 (a))。また,同様の手 順で外部磁界中の Ic 値の評価も可能であり, 併せて Fig. 3 (b) にプロットした。このように,応用上重要となるが通電法では取 得困難であった高 L。領域の特性を評価することに成功した。

謝辞 本研究は、JST 先端的低炭素化技術開発(ALCA)「未 来の水素利用社会を支える低コスト高性能 MgB₂線材の開発」 の一環として行ったものである。

参考文献

S. Ye et al., Supercond. Sci. Technol. 25 (2012) 125014.
 G.-Z. Li et al., Supercond. Sci. Technol. 25 (2012) 115023.

[3] K. Higashikawa et al., Physica C (2014) in press.

Fig. 1. Cross-sectional model of the AIMI-processed mono-core MgB_2 wire for the FEM analysis.

Fig. 2. (a) sample setup and scanned position, (b) magnetic field distribution in width direction at external magnetic field of +100 mT at 5 K, (c) +400 mT at 5 K, (d) +100 mT at 40 K, (e) +600 mT at 40 K.

液体水素冷却 MgB₂線材の磁場下における過電流特性

Over-current Properties of MgB₂ Wire Cooled by Liquid Hydrogen under Magnetic Field

松澤 崇之, 堀江 裕輝, 米田 和也, 大浦 洋祐, 白井 康之, 塩津 正博, 畑 幸一(京都大学); 達本 衝輝(原子力機構); 成尾 芳博, 小林 弘明, 稲谷 芳文(JAXA)

MATSUZAWA Takayuki, HORIE Yuki, YONEDA Kazuya, OURA Yosuke, SHIRAI Yasuyuki, SHIOTSU Masahiro, HATA Koichi (Kyoto Univ); TATSUMOTO Hideki (JAEA); NARUO Yoshihiro, KOBAYASHI Hiroaki, INATANI Yoshifumi (JAXA) E-mail: matsuzawa@pe.energy.kyoto-u.ac.jp

1. はじめに

液体水素は潜熱が大きく、粘性係数が小さいなどの利点から、MgB₂を含む高温超電導体の冷媒として期待されている。液体水素冷却超電導機器を安定的に設計するためには、 超電導体の過電流特性を明らかにする必要がある。

 MgB_2 線材に臨界電流 Lcを超える電流を流して V-1特性を 測定すると、ジュール発熱によって温度が変わるため、シース を含めた導体構造と冷却方法に固有の特性しか得られない。 そこで、 MgB_2 線材の一般的な特性の把握を目指し、 MgB_2 線 材の過電流特性を評価した。本報では、磁場と温度を変化さ せて、 MgB_2 線材のシースに流れる電流と MgB_2 部分に流れる 電流との分流比 I_N/I 及び電流と MgB_2 部分の抵抗率 ρ_{MgB2} と の関係を評価した結果について報告する。

2. 試験体

実験装置や実験方法の詳細は既に報告した[1]ので省略 する。試験体は直径 0.83mm、電流端子間距離 105.5mm、電 圧端子間距離 47.65mm の MgB₂線材を水平に支持した。試 験体には Cuシース Nb バリア MgB₂線材を用いた。ローレンツ 力による試験体の変形を緩和するため、試験体と平行に FRP 板を設置した。

3. 実験結果と考察

実験は、1.1kPa の圧力下、液温を 21K~29K、磁場を 0T ~0.8Tの条件下で、試験体に連続的にゆっくり上昇する電流 を与えた。磁場が 0T、0.2T、0.4T、0.8T の下で、試験体のタ ップ間電圧が 1μ V/cm に達した時の電流値を臨界電流値と し、各磁場下での MgB₂線材の臨界電流値を以下のように温 度の関数として表した。

$$I_{C} = X \{ 1.0 - (T/T_{C}(B))^{Y} \}^{Z}$$
(1)

ここで、X、Y、Zは磁場ごとに求めた定数である。

MgB2線材の電気抵抗 R(T,I)を次式で近似する。

 $R(T, I) = R_N(T) [1.0-1.0/{((1.0-a) + a (I/I_c(T))^m)^{0.1}]}$ (2) R_N はバリア材の Nb とシース材の Cu の合成抵抗である。ここ で、上式の aとmを決定するために熱伝達曲線と非沸騰熱伝 達理論式を比較した。Fig.1 は過渡加熱法[2]によって得られ た熱伝達曲線と非沸騰熱伝達理論式である。縦軸は熱流束、 横軸は試験体表面の飽和温度からの上昇分である。MgB₂線 材からの発熱率 $Q=Q_dexp(t/\tau)$ となるように電流を与えた。こ の熱伝達曲線の非沸騰部分が非沸騰熱伝達理論式と一致 するという仮定の下、aとmを決定した。

Fig.2 は 21K における分流比と電流との関係を、磁場をパラ メータとして示す。分流比は(2)式より、以下のように表せる。

 $I_N / I(T) = 1.0 - 1.0 / {(1.0-a) + a (I/I_C(T))^m}^{0.1}$ (3) 分流比は、流れる電流が大きいほど、磁場が大きいほど大きくなっている。

Fig.3 は 21K における MgB₂線材の抵抗率 ρ_{MgB^2} と MgB₂部 分に流れる電流 I_s との関係を、磁場をパラメータとして示す。 いずれの磁場においても、抵抗が出始めたところでは抵抗率 が急激に上昇し、電流の増加に伴って勾配が小さくなってい る。

参考文献

- 白井ら: 2012年度秋季低温工学超電導学会予稿集 1D-a04
- M.Shiotsu, et.al., Advances in Cryogenic Engineering (Materials), Vol.44, Plenum Press, New York, 1998, p.632-629

Fig.1 Experimental results of transient heat transfer test

Fig.2 Sharing ratio of the electric current through the superconductor and the sheath

Fig.3 Resistivity of MgB₂ wire

— 199 —

液体水素冷却 MgB₂ 超電導線材の過電流特性の解析 Over Current Characteristics of MgB2 Superconducting Wire Cooled by Liquid Hydrogen

<u>茂田 宏樹</u>, 白井 康之, 塩津 正博, 堀江 裕輝, 松澤 崇之, 米田 和也, 大浦 洋祐 (京大); 小林 弘明, 成尾 芳博, 稲谷 芳文 (JAXA); 達本 衡輝 (原子力機構) <u>SHIGETA Hiroki</u>, SHIRAI Yasuyuki, SHIOTSU Masahiro, HORIE Yuuki, MATSUZAWA Takayuki, YONEDA Kazuya, OURA Yosuke (Kyoto University); KOBAYASHI Hiroaki, NARUO Yoshihiro, INATANI Yoshihumi (JAXA); TATSUMOTO Hideki (J-PARK) E-mail: shigeta@pe.energy.kyoto-u.ac.jp

1. はじめに

液体水素は潜熱が大きく、粘性が小さいなどの点から、 MgB₂を含む高温超電導体の冷媒として期待されている。液 体水素冷却超電導機器を安定的に設計するためには、超電 導体の過電流特性を明らかにする必要がある。我々は今まで に液体水素冷却 MgB₂線材について実験によって過電流特 性を調べてきており、今回実験と同じ条件で数値解析を行っ たので報告する。

2. 実験について

線材が超電導体,シース,バリア材の複合導体であるため、 試験体に電流を流して電圧を測るだけでは線材の温度を知 ることはできない。そこで分流比をパラメータとして試験体の 発熱量と温度変化の関係を非沸騰領域における熱伝達曲線 の理論式にフィッティングし、入力電流と温度の関係を得る手 法(過渡加熱法[1])を用いた。試験装置や実験手順等は別稿 にて説明しているので省略する[2]。試験の結果は後述の数 値解析との比較で合わせて紹介する。

3. 数值解析

Fig.1 に示す2次元モデルを用いて数値解析を行った。線 材に流す電流値を指数関数的に増加させて常電導転移した 後は臨界電流を超えた分だけがシースに流れるという理想的 な超電導現象に近似し、線材の発熱と水素の冷却を加味した 熱伝達を計算し温度変化を調べた。2次元モデルをメッシュ で区切り各メッシュに対し熱容量 c [J/Km³]、熱伝達率 *A* [W/mK]、温度 T [K]を与えて陰的差分法を用いて熱伝達を 計算した。基礎方程式は次式で表わされる二次元熱伝導方 程式を用いた。

$$\frac{\partial T}{\partial t} = \frac{\lambda}{c} \nabla^2 T$$

線材が円柱型で層方向に関して断面積が異なり計算が複 雑になるため、抵抗率及び電流密度はシースと超電導体そ れぞれで均一であるとして計算した。また、バリア材は抵抗が 十分大きいため電流は流れないと近似した。実験では入熱量 が時間に対し指数関数となるように電流をフィードバック制御 しているが数値解析では入熱量は後から計算されるため、入 力電流 /[A]を指数関数の平方根として以下の式で定めた。

$$I = I_0 (\exp(t/\tau))^{0.5}$$

時定数 τ は 8 s 、液温は 21K とし臨界電流値 I_c [A]および 冷却熱流束 Q_c [W/m²]は実験から得た温度関数を用いた。

4. 結果と考察

Fig.2に実験及び数値解析で得られた通電電流と温度の関係を並べて示す。臨界電流値83A付近、および180A~220A 付近で数値解析と実験の結果で差が生じている。180A~ 220A付近で数値解析のほうが実験よりも早く温度が上昇して いるが、これは入熱量の定め方の違いから生じたものである。 抵抗が大きい領域において実験では入力電流の上昇が抑え られるため、入力電流を指数関数の平方根で定めた数値解 析と比べて温度上昇が遅くなっていると考えられる。また臨界 電流付近で実験ではすでに温度が上昇し始めているが、これ は実験で用いた超電導体が理想的なものではなく、臨界電 流を超える前の段階ですでに抵抗が発生し発熱していたこと を表わしていると考えられる。以上により、結果の差異は妥当 であり全体的にほぼ同じ傾向が得られたため、過渡加熱法に より得られた温度変化の値の正当性が確認できた。またこの 結果から臨界電流手前の非常に小さな抵抗であっても線材 の温度上昇に寄与する可能性があることがわかった。

今後はMgB₂の抵抗率を電流密度の関数として表わした式 を用いて数値解析を行う予定である。

- M.Shiotsu, et.al., Advances in Cryogenic Engineering (Materials), Vol.44, Plenum Press, New York, 1998, p.632–629
- Y.Shirai, et.al.: Abstracts of CSJ Conference, Vol.86 (2012) p.55

Fig.1 : Simulation Model

Fig.2 : Comparison of T-I Characteristics