Gd 系高温超電導コイルにおける超電導層断面アスペクト比と と遮蔽電流特性の関係

Relationship between aspect ratio of superconducting area's cross section and its effect on shielding current characteristics in Gd-system HTS coil

柴山 優花, 中村 武恒 (京大); 横山 彰一 (三菱電機)

<u>SHIBAYAMA Yuka</u>, NAKAMURA Taketsune (Kyoto Univ.); YOKOYAMA Shoichi (Mitsubishi Electric Corp.) E-mail: y-shibayama@asl.kuee.kyoto-u.ac.jp

1. はじめに

我々は,経済産業省の産業技術研究開発委託費(高温超 電導コイル基盤技術開発プロジェクト)[1]の一環として,高温 超電導MRIの開発に向けたコイル中心磁場安定度の評価と 同改善法の検討を実施している。前報では,GdBCO系小型 高温超電導コイルにおける電流輸送特性の定量評価法[2]や, 線材長手方向バラつきの非対称Weibull関数による統計学的 評価手法[3]に関する検討結果を報告した。

高温超電導線材における遮蔽電流特性は、形式的には同 線材における電界-電流特性を正確に表現できればその特 性が記述できていることになる。しかしながら、当該特性が複 雑な磁界ベクトル依存性を有していることから、コイル形状と いう特有の境界条件に伴って、その本質が複雑になっている。 さらに、RE系高温超電導線材では、超高アスペクト比という線 材構造の特異性も相俟って、さらに問題が複雑である。そこ で本解析では、小型コイルを対象として、超電導層の断面ア スペクト比と遮蔽電流特性の関係を解析的に検討し、薄膜構 造の影響を詳細に検討した。

2. 解析方法

本研究では、(株)フジクラ製のGdBCO高温超電導小型パンケーキコイルを検討対象とした。3次元有限要素法を適用し、 1/4の軸対称モデルとした。E-/構成方程式としては、本来はパーコレーション遷移モデル式[4]を適用すべきであるが、現状収束性が悪いことから、時間変化の時定数に気を付けながらn値モデル+Kimモデルを適用して解析を実施した。

Fig. 1には、解析モデル図の一例を示す。巻数15のシング ルパンケーキコイルを対象として、テープ断面を4×10分割し た。上記条件下において、テープ厚みを160 µm~1.6 µmまで 変化させ、遮蔽電流特性を解析した。 強制電流条件として は、1 sでランプアップして、その後1 s間一定電流値に保持し た。なお、テープ幅が狭くなるほどメッシュ作成の際にその幾 何学性に注意する必要がある。

3. 解析結果と考察

Fig. 2には,テープ厚16 μmのモデルについて得られた遮蔽 電流特性解析例(ランプアップ直後)を示す。紙面の都合で 詳細は当日報告するが,テープ厚160 μmでは厚み方向の遮 蔽電流が生じていたが,16 μmでは当該方向の遮蔽が制限さ れ,幅方向遮蔽電流が支配的となった。

Fig.3には、縦軸を次式で定義されるαとし、コイル内の変化をプロットした解析結果を示す。

$$\alpha = \frac{B - B_S}{B} \tag{1}$$

ここで, Bは遮蔽電流特性を考慮しない(強制通電のみ)場合の磁束密度であり, B。は遮蔽電流を考慮した場合の結果である。横軸は中心からコイル内端までの距離を示す。

テープ材厚みを薄くしていくと、コイル中心においては遮蔽 電流の影響がより大きくなることが分かった。従って、例えば 全体に超電導層が存在すると考えられるビスマス系テープ材 と、非常に薄い超電導層を有する希土類系テープ材では、支 配的遮蔽電流分布が異なると推測される結果が得られている。 更に薄いテープ材の結果など、詳細は当日に報告する。

謝辞

本研究は,経済産業省の産業技術研究開発委託費(高 温超電導コイル基盤技術開発プロジェクト)の一環とし て,三菱電機からの再委託を受けて実施した。

参考文献

- 横山彰一他:第89回2014年度春季低温工学·超電 導学会講演概要集, 3A-p01 (2014)
- 中村武恒 他: 第 89 回 2014 年度春季低温工学·超電 導学会講演概要集, 3A-p03 (2014)
- 柴山優花 他:第 89 回 2014 年度春季低温工学·超電 導学会講演概要集, 3A-p04 (2014)
- 4. 木須隆暢 他: 低温工学, Vol. 34, No. 7 (1999) pp. 322-331

Fig.1 Three dimensional FEM model for analyzing shielding current of GdBCO small sized coil (turn number: 15)

Fig. 2 Example of analysis result of shielding current distribution for a GdBCO superconducting layer

Fig. 3 Influence of magnetic field distributions of GdBCO pancake coils for different thickness of the tapes, i.e., $160 \ \mu m$ and $16 \ \mu m$.

— 100 —

REBCO 線材の超電導特性のばらつきが遮蔽電流磁場に与える影響 Influence of Nonuniformity of Superconductivity Characteristics in REBCO tapes on Screening Field

松見 絢子,今市 洋平,持田 歩,有谷 友汰,齋藤 隼,王 韜,石山 敦士(早大);植田 浩史(阪大);

宮﨑 寛史, 戸坂 泰造, 野村 俊自, 来栖 努(東芝)

MATSUMI Ayako, IMAICHI Yohei, MOCHIDA Ayumu, ARIYA Yuta, SAITO Jun, WANG Tao,

ISHIYAMA Atsushi (Waseda univ.); UEDA Hiroshi (Osaka univ.);

MIYAZAKI Hiroshi, TOSAKA Taizo, NOMURA Shunji, KURUSU Tsutomu (Toshiba)

E-mail: ayako_matsumi@akane.waseda.jp

1. はじめに

我々は、経済産業省プロジェクトである「高温超電導定磁 場コイルシステムの研究開発」で、10T級(9.4T)のヒト全身用 MRIの実現を目指している[1]。高温超電導コイルにおいて、 高温超電導線材がテープ形状をしているため、遮蔽電流が 顕著に誘導され、それによって生じる磁場がコイルの発生磁 場の空間的均一性や時間的安定性を損なう可能性がある。ま た線材内部での臨界電流分布は均一ではなく、この不均一 性が設計磁場、遮蔽電流磁場に更に影響を与えることが考え られる。そこで今回は、線材内部の超電導特性の不均一性が 遮蔽電流磁場に与える影響を評価することを目的とし、これま でに開発した3次元電磁場解析手法を用いて、上記プロジェ クトで設計・検討を行っている200mm体、10T級均一磁場発生 コイル等を対象として、評価・考察したので報告する。

2. 解析モデル

2.1 解析対象のコイル

解析対象のコイルは,幅 5 mm,厚さ約 0.1 mm(超電導層 2.0 μm)の REBCO 線材の離散配置を考慮して,10 ppm @ DSV 100 mm 以下かつ巻線使用量が少なくなるように最適化 設計[2]された内径 200 mm の 10 T 級小型磁石である。概略 図を Fig. 1,諸元を Table 1 に示す。

2.2 線材内 Ic の不均一性

線材内 I_c の不均一性が遮蔽電流磁場に与える影響について評価した。 I_c の不均一性としてGauss分布を仮定し、線材長手方向(平均10 mm間隔)および幅方向(0.5 mm間隔)の各要素に正規乱数で I_c 分布を与えた。今回は、平均値を理想的な I_c 特性として標準偏差を0.1として解析を行った。

3. 解析結果

通電パターンは、コイル電流を0.1 A/sで288 Aまで励磁し、 6000 s まで保持した。励磁完了時の*I*。分布の例として、各コイ ルを構成するダブルパンケーキコイルの内、最低*I*。をもつパン ケーキコイルの*I*。分布をFig. 2に示す。破線は運転電流の値 を示している。不整磁場の解析結果をFig. 3に示す。(a)の全 コイルが作る不整磁場は、励磁直後で不均一性を考慮しない 場合-0.041 Tなのに対し、考慮した場合-0.038 Tと減少した。 また、(b)より、Coil 1はほとんど変わらないが、Coil 2-4全てに ついて各々が作る不整磁場の減少が確認された。特にCoil 4 で不整磁場の減少が最も大きくなった。これは、Fig. 2から*I*。の 不均一性の影響が、Coil 1は負荷率が低いため現れず、負荷 率が特に高いCoil 4で最も大きく表れたと考えられる。

<謝辞>

本研究は、経済産業省の産業技術研究開発委託費「高温 超電導コイル基盤技術開発プロジェクト<高磁場コイルシス テムの研究開発>」を通じて実施された。

参考文献

- T. Tosaka, et al.: Abstracts of CSJ Conference, Vol.90 (2014) 3B-p05.
- 2. A. Ishiyama, et al.: *Abstracts of CSJ Conference*, Vol. 89 (2014) p.153

Fig. 1 Schematic diagram of 10-T class small-size model magnet.

Table 1 Specifications of 10-1 class small-size model magnet				
	Coil1	Coil2	Coil3	Coil4
Inner radius[mm]	143.77	159.54	100.00	100.00
Outer radius [mm]	176.89	310.26	406.24	219.52
height [mm]	48.0	96.0	12.0	72.0
Turns / Single pancake	69	314	638	249
Number of single pancakes	8	16	2	12
Transport current [A]	288	288	288	288

Fig. 3 Numerical results of screening field at center generated by (a) all coils and (b) each coil.

薄膜超伝導線材で巻かれた三次元形状をもつコイルに適用可能な 電磁界解析モデルのモデル化誤差評価

Modeling error evaluation of the modeling for electromagnetic field analyses of

three-dimensional-shape coils wound with coated conductor

<u>曽我部 友輔</u>, 塚本 伊秋, 美舩 健, 中村 武恒, 雨宮 尚之(京大)

SOGABE Yusuke, TSUKAMOTO Tadaaki, MIFUNE Takeshi, NAKAMURA Taketsune, AMEMIYA Naoyuki (Kyoto University) E-mail: y-sogabe@asl.kuee.kyoto-u.ac.jp

1. はじめに

超伝導マグネットの設計や性能評価のためには電磁界解 析が有用であるが、三次元形状をもち、ターン数の多いマグ ネットの電磁界解析を行うためにはコンピュータのメモリや計 算時間を抑制できるモデルの構築が重要である。我々は薄 膜高温超伝導線材で巻かれた三次元形状をもつコイルの電 磁界解析モデルを構築している。

2. 三次元形状をもつコイルの電磁界解析モデル

電磁界解析の支配方程式として以下の式を用いた。

$$\nabla \times \left(\frac{1}{\sigma} \nabla \times \boldsymbol{n} T\right) \cdot \boldsymbol{n}$$

+ $\frac{\partial}{\partial t} \left(\frac{\mu_0 t_s}{4\pi} \int_{S'} \frac{(\nabla \times \boldsymbol{n}' T') \times \boldsymbol{r} \cdot \boldsymbol{n}}{r^3} dS' + \boldsymbol{B}_{\text{ext}} \cdot \boldsymbol{n}\right) = 0$

ここで、薄膜高温超伝導線材は超伝導層の断面アスペクト比 が非常に大きいため、線材厚さ方向で電磁界分布が一様で あると仮定する薄板近似を適用している[1], [2]。Fig. 1 に薄 膜近似の概念図を示す。

コンピュータメモリ、計算時間を抑制したコイルのモデル化 のため、入れ子近似とブロック近似という近似を導入した[3]。

入れ子近似は、コイルを、閉ループを線材厚さ方向に重 ね、各ターンが回路的に並列接続された状態とし、全てのタ ーンに同じ大きさの電流が流れているとする近似である。この 近似は従来も広く用いられてきたものであるが、その近似が解 析結果に与える影響については十分検討されていない。Fig. 2 に入れ子近似の概念図を示す。この近似により、2 極マグネ ットなどのようなS極、N極を一つの組として用いるようなコイル では、コイルの幾何学的対称性により電磁界解析における解 析領域をコイル全体の八分の一に縮小できる。

ブロック近似では、隣接する複数のターンを一つのブロッ クとして扱い、そのブロックを代表する一つのターンのみを解 析対象とし、同じブロックに属する代表するターン以外は代表 するターンと同様の電流分布となっていると仮定して解析を 行う。ブロック近似の概念図を Fig. 3 に示す。この近似によっ て、多くのターンからなるコイルの電磁界解析の際に、コンピ ュータメモリや計算時間を抑制できる。

上記の近似を用いて、三次元形状をもつ高温超伝導コイルに適用可能な電磁界解析モデルを構築した。この解析モデルを適用することによって、どの程度のモデル化誤差が生じうるかを、Fig. 4 に示すコイルの電磁界解析により比較検討した。

謝辞

本研究は科学技術振興機構の研究成果展開事業「戦略 的イノベーション創出推進プログラム(S-イノベ)」の支援によ って行われた。

Fig. 2 (a) Without nested loops approximation; (b) Applied nested loops approximation.

Fig. 3 (a) Without block approximation; (b) Applied block approximation.

Fig. 4 Three-dimensional-shape coil.

参考文献

- 1. Y. Ichiki, et al.: Physica C 412-414 2 (2004) 1050-1020
- 2. M. Nii, et al.: Supercond. Sci. Technol. 25 (2012) 095011
- Y. Sogabe, et al.: Abstracts of CSSJ Conference, Vol. 89 (2014) p. 5

— 102 —

CuNb/Nb₃Sn ラザフォードケーブルの通電特性に与える曲げ径の影響

Influence of bending diameter on transport properties of CuNb/Nb₃Sn Rutherford cable

小黒 英俊, 大村 拓也, 淡路 智, 渡辺 和雄(東北大);三好 康之, Chaud Xavier(LNCMI, CNRS);

二森 茂樹,清水 禎(物材機構);杉本 昌弘,坪内 宏和(古河電工);花井 哲(東芝)

OGURO Hidetoshi, OMURA Takuya, AWAJI Satoshi, WATANABE Kazuo (Tohoku Univ.); MIYOSHI Yasuyuki,

CHAUD Xavier (LNCMI, CNRS); NIMORI Shigeki, SHIMIZU Tadashi (NIMS); SUGIMOTO Masahiro,

TSUBOUCHI Hirokazu (Furukawa Electric); HANAI Satoshi (Toshiba)

E-mail: h-oguro@imr.tohoku.ac.jp

1. はじめに

我々のグループでは、次期定常強磁場施設建設のために 新しい Nb₃Sn 線材及び、ラザフォードケーブルを開発してきた。 その結果、Nb rod 法 CuNb 補強 Nb₃Sn 線材(CuNb/Nb₃Sn)、 及び CuNb/Nb₃Sn ラザフォードケーブルの開発を行い、これら が強磁場中で高い機械特性及び臨界電流特性を持つことを 報告してきた[1, 2]。さらに、CuNb/Nb₃Sn ラザフォードケーブ ルが、現在建設中の 25 T 無冷媒超伝導マグネット (25T-CSM)に適用可能である事を、多層コイルの強磁場中通 電試験により示した[2]。

25T-CSMでは、Nb₃Sn ラザフォードコイルを事前曲げ処理 を利用した React & Wind 法で作製している。このとき、巻き枠 ヘラザフォードケーブルを巻くことで、純粋曲げひずみが印加 されてしまうが、熱処理ボビンとコイル径を等しくすることで、コ イルに巻いた際に純粋曲げひずみが発生しないように調整し ている。今後のマグネット開発において、React & Wind 法でコ イル作製を行う際に、コイルに巻いた際に加わる純粋曲げひ ずみをどこまで許容できるかを知ることは、コイル設計におけ る指針として重要なパラメータとなる。本研究では、 CuNb/Nb₃Sn ラザフォードケーブルを巻き枠の径を変えたボビ ンに巻き、そのときの通電特性を強磁場中で評価した結果を 報告する。

2. 実験方法

試料コイルとして、Nb rod 法 CuNb 補強 Nb₃Sn ラザフォー ドケーブルを用いた、1 層 3.5 ターンのダブルパンケーキコイ ルを作製した。ラザフォードケーブルは、 φ150 mm の熱処理ボ ビンにて 670°C×96 h の熱処理を行った。熱処理後には、ケ ーブルのフラットワイズ方向に正方向の事前曲げ処理を、 φ65 mm のプーリーに通すことで行った。これを内径 φ110 mm(純粋 曲げひずみ 0.2%)及び φ70 mm(純粋曲げひずみ 0.6%)となるよ うにコイル巻きを行い、エポキシで含浸した。

通電試験は LNCMI(Grenoble)の 17T 水冷マグネットを使用 し、最大 18 T までの磁場中で実験を行った。このとき、 φ170 大口径冷凍機冷却クライオスタットを用いて、温度を変えて最 大500 Aまでの通電電流で臨界電流(*L*)測定を実施した。また、 NIMS の 14T 大口径超伝導マグネットを利用して、液体へリウ ム中にて最大 14 T、2000 A として通電試験を行った。

3. 実験結果

図1に温度、磁場を変えて *L*を測定した結果を示す。*L*の 値は、0.1 μV/cmの電界基準で評価した。結果として、6 Kか ら12 Kまでの温度範囲で、18 T以下の磁場中での *L*の評価 ができた。250 A を超える範囲では、試料の温度上昇が大き く、評価することが出来なかった。この図から、明らかに 0.2% 純粋曲げを与えたコイルの *L*が高いことが分かる。また、磁場、 温度が変化してもこの傾向は変わらないことが分かった。

これらのコイルに対して、4.2 K での *I*。の磁場依存性を評価した結果を図 2 に示す。0.2%純粋曲げコイルは、14 T において 2 回のトレーニングとみられるクエンチの後に *I*。に到達した。これは、そのコイル径が110 mmと大きいため、大きな電磁力(約 150 MPa)が印加されたためだと思われる。*I*。は 0.01 μV/cm の電界基準で評価した。0.2%純粋曲げコイルでは *I*,が

1641 Aとなり、n 値は 33 と高い値を持っていた。n 値モデルに よって 1 μV/cm の電界基準での 0.2%純粋曲げコイルの *I*を 見積もると 1870 Aとなり、素線の *I*が 116 A のため[3]、劣化 が無いことが分かった。0.6%純粋曲げコイルは 0.2%純粋曲げ コイルより、*I*が 25%程度低下していることが分かった。 **謝辞**

本研究は科学研究費補助金(基盤 A)による補助を受けました。

参考文献

- H. Oguro, et al.: Abstracts of CSJ Conference, Vol. 88 (2013) p.9
- H. Oguro, et al.: Abstracts of CSJ Conference, Vol. 89 (2014) p.140
- H. Oguro, et al.: IEEE Trans. Appl. Supercond., Vol 24, (2014) 8401004

Fig. 1 Critical current as a function of magnetic field for the CuNb/Nb₃Sn Rutherford coil at various temperature. The closed and open symbols show the results of 0.2% and 0.6% pure bending coil, respectively.

Fig. 2 Critical current as a function of magnetic field for the $CuNb/Nb_3Sn$ Rutherford coil at 4.2 K.

外挿 LTS コイルクエンチに対する内挿 REBCO コイルのクエンチ保護

Protection of Insert REBCO Coils from Quenches of Outsert LTS Coils

<u>土屋 雄司</u>, 武藤 翔吾, 小黒 英俊, 淡路 智, 渡辺 和雄 (東北大); 宮崎 寛史, 花井 哲, 井岡 茂 (東芝);大保 雅載, 飯島 康裕 (フジクラ) <u>TSUCHIYA Yuji</u>, MUTO Shogo, OGURO Hidetoshi, AWAJI Satoshi, WATANABE Kazuo (Tohoku Univ.); MIYAZAKI Hiroshi, IOKA Shigeru (Toshiba); DAIBO Masanori, IIJIMA Yasuhiro (Fujikura) E-mail: y.tsuchiya@imr.tohoku.ac.jp

1. はじめに

REBa₂Cu₃O_{7.8}(REBCO、RE:希土類)線材は、機械特性や強磁場下の臨界電流特性が優れることから、強磁場超伝導マグネットへの応用が期待されている[1]。一方、REBCO線材はLTS線材に比べ常伝導伝播速度が遅いため、クエンチ時に局所的熱暴走(ホットスポット)が発生して劣化、焼損することが懸念される。特に、外挿LTSコイルと内挿REBCOコイルを組み合わせた超伝導マグネットにおいて最もホットスポットの発生しやすい条件は、LTSコイルのクエンチ時にREBCOコイルに過電流が誘起される状況であると考えられている[2]。

本報では、無冷媒 LTS 超伝導マグネットを用いた REBCO コイルに対する外部磁場遮断試験の実験手法について紹介 し、クエンチ保護の方針について検討する。

2. クエンチ保護方法の比較

クエンチ保護の主な方針としては、以下の3種類が挙げられる。(1)臨界電流を超えないように運転してクエンチを予防する。(2)自律的にクエンチから回復する非絶縁コイルを用いる。(3)ヒーターによってコイル全体を常伝導転移させてホットスポットの発生を防止する。以上の方法は、運転電流密度と、クエンチに対して能動/受動的という点からFig.1のように分類される。我々は、東北大学強磁場超伝導材料研究センターにおける25T無冷媒超伝導マグネットの開発に際し、方針(1)を採用してきた[1]。また、米国フロリダ州立大学国立強磁場研究所においては、方針(3)が採用されている[3]。

3. 実験方法

冷凍機で伝導冷却された外挿 LTS マグネットと内挿 REBCO コイルの外観と模式図を Fig. 2 に示す。無冷媒超伝 導マグネットを用いるため、磁場遮断時に冷媒の蒸発がない という利点がある。Table 1 に、最大磁場、最大通電電流、運 転温度、遮断試験後の復帰時間を示す。エポキシ含浸した REBCO シングルパンケーキコイルに対して、定常磁場下通 電試験と、保護抵抗をつないで外部磁場遮断試験を行った。

4. 実験結果及び考察

REBCO コイルの 40 K 自己磁場下の臨界電流は 303 A であった。初期温度 40 K において保護抵抗を変化させたときの電流電圧曲線の典型例を Fig. 3 に示す。保護抵抗値 6.53 mΩ 時には 2 つのピーク構造を持ち、履歴の形状から転移温度以上まで温度上昇したことが示唆される。また、誘導電流は臨界電流を超えたにもかかわらず、REBCO コイルの劣化や焼損は起こらなかった。当日は、遮断試験の結果からクエンチ保護の方針について検討する予定である。

謝辞 本研究は科学研究費補助金 基盤研究(A)25246032 の支援を受けて行われました。

参考文献

1. S. Awaji *et al.*, IEEE Trans. Appl. Supercond. Vol. 24, (2014) pp. 4302005.

2. Y. Yanagisawa *et al.*, IEEE Trans. Appl. Supercond. Vol. 24, (2014) pp. 4301005.

3. H. W. Weijers *et al.*, IEEE Trans. Appl. Supercond. Vol. 24, (2014) pp. 4301805.

Fig. 1 Classification of the quench protection for the REBCO coils as a function of the current density and the active/passive mechanisms.

Table 1 Specifications of the LTS magnet and the cryostat for _____the shutdown and the burn-in tests of the sample coils._____

Fig. 2 Picture of and schematic drawing of the shutdown test setup with the cryogen-free superconducting magnet (8T-CSM) and the cryo-cooler for the sample coil.

Fig. 3 Current-voltage hysteresis loop during the shutdown test with the different dump resistor.

— 104 —

無冷媒 25T 超伝導マグネット用 HTS インサートの現状と対策

Present status and remedies of the HTS inserts for a 25T cryogen-free superconducting magnet <u>淡路智</u>、小黒英俊、渡辺和雄 (東北大)、宮崎寛史, 花井哲, 井岡茂 (東芝), 三好康之、Xavier Chaud (LNCMI, CNRS) <u>AWAJI Satoshi</u>, OGURO Hidetoshi, WATANABE Kazuo (Tohoku Univ.), MIYAZAKI Hiroshi, HANAI Satoshi, IOKS Shigeru (TOSHIBA), MIYOSHI Yasuyuki, CHAUD Xavier (LNCMI, CNRS) E-mail: awaji@imr.tohoku.ac.jp

1. はじめに

東北大では、強磁場コラボラトリ計画の一環として、25T 無 冷媒超伝導マグネットを建設中である [1]。このマグネットは、 14.5T の金属系超伝導コイルの中に、10T の磁場を発生させ る高温超伝導マグネットを組み合わせて 25.5T の磁場を発生 させる設計としている。高温超伝導コイルコイルは、 GdBa₂Cu₃O_y(Gd123, RE;希土類)コート線材(Coated conductor)を採用することにしているが、伝導冷却に必要不可 欠なエポキシ含浸による劣化が危惧されている。含浸コイルコ イルを機械的に分割して、熱収縮による剥離応力を減少させ ルことで、エポキシ含浸 Gd123 コイルを製作することとしてい る。今回は、R&Dとして Gd123 エポキシ含浸コイルを作製し、 バックアップ磁場最高 18 T 中、伝導冷却条件でのテストを実 施した結果について報告する。

2. 実験方法

用いた線材は、75 μm 厚ハステロイ基板上にバッファー層 を介して成膜された Gd123 テープであり、20 μm の銅メッキを 施してある、実機と同じ仕様の線材である。この線材を、内径 96mm のボビンに巻線し、58 ターンのシングルパンケーキを2 個作製したものを重ねて 2 積層コイルとした。コイル外径は約 120 mm である。線材の *I*_cは 77.3K 自己磁場で 198A である。 コイルはエポキシ含浸をしているが、剥離応力低減のため、2 分割している。分割によりコイルの内径外径比は約 1.1 程度と なっている。このコイルを、液体窒素中で試験した結果、コイ ル *I*_cは約 108-109 A であり、n 値は 28-29 と良好な特性を示 した。その後、コイルを、伝導冷却クライオスタットにセットし、 18 T のバックアップ磁場中、20 K で通電試験を実施した。試 験は、フランスグルノーブルの強磁場研究センター(LNCMI) の水冷マグネットを用いて行った。

3. 結果と議論

図1は、20K、19 T における通電試験結果を示す。インダク

Fig. 1 Current vs. Voltage property of each coil in 18 T at 20 K.

タンスによる電圧が約0.5mV通電直後から発生し、その後一 定となっているが、約130 A 近傍で急激な電圧上昇が、上コ イルのみで発生した。その後,電流をホールド中もわずかな 電圧上昇が見られた。この結果は、20K までの冷却による熱 応力では、コイルに問題はなかったが、通電によるわずかな 電磁応力が加算されることで、コイルの一部が劣化したことを 示唆している。図2は、バックアップ磁場 18 T, 通電電流 130 Aの時のコイル内部応力分布である。Hoop応力は,最大でも 240 MPa であり,特性が劣化する応力限界の半分以下である。 したがって、今回の劣化は、剥離によるものであると結論せざ るを得ない。室温から20 K までの冷却によって誘起される剥 離応力は、最大で約0.48 MPaと見積もられ、さらに電磁力に よって約 0.42 MPa が加算される。したがって、トータルで 0.9 MPa の剥離応力によってコイルが劣化したと考えられる。コイ ルに電極を追加し, 77.3 K 自己磁場中で試験をした結果, 内 コイルの外側部分で Icとn 値が大きく減少していることが分か った。

これらの結果から、Gd123 テープ線の場合には数セクション に分割しただけでは、剥離応力の低減が十分ではない可能 性がある。したがって、Gd123 コイルは、全ターン分割を採用 することとした。一方で、最近の Bi2223 線材の高性能化・高 強度化を受けて、Bi2223 線材を用いたコイル設計も実施する こととした。全ターン分割コイルのテスト結果については次の 講演で、Bi2223 線材を用いたコイル設計については、次々講 演で詳細報告を行う。

謝辞

本研究の一部は科学研究費基盤研究(A)の支援を受けて います。

参考文献

1. S. Awaji et al., IEEE TAS 24 (2014) 4302005.

無冷媒 25 T 超伝導マグネット用 REBCO 内挿コイルの開発 ―積層パンケーキコイルによる検証― Development of REBCO insert coil for a cryogen-free 25 T superconducting magnet

-Test results of stacked pancake coils-

宮崎 寛史, 岩井 貞憲, 高橋 政彦, 戸坂 泰造, 田崎 賢司, 根塚 隼人, 井岡 茂(東芝); 淡路 智,渡辺 和雄,小黒 英俊(東北大);大保 雅載,飯島 康裕(フジクラ) MIYAZAKI Hiroshi, IWAI Sadanori, TAKAHASHI Masahiko, TOSAKA Taizo, TASAKI Kenji, NEZUKA Hayato, IOKA Shigeru (TOSHIBA); AWAJI Satoshi, WATANABE Kazuo, OGURO Hidetoshi (Tohoku Univ.); DAIBO Masanori, IIJIMA Yasuhiro (Fujikura) E-mail: hiroshi17.miyazaki@toshiba.co.jp

1. はじめに

内挿の REBCO コイルは定格 140 A 通電時に 11.5 T の磁 場を発生し、LTSコイルが発生する14Tと組み合わせること で φ 52 mm の室温空間に 25.5 T の磁場を発生させる。今回, REBCO 線材の許容剥離応力のばらつきに起因する特性劣 化を防ぐため、巻き線部を各ターンで分割する方式を検討し た。本手法の有効性を検証するため,内径 96 mm, 外径 172 mmの6積層コイルを試作し、伝導冷却にて実施した通電 試験結果について報告する。

2. コイル製作方法検討

許容剥離応力のばらつきに起因すると考えられる特性劣 化を回避するために, 20 μm の銅メッキ線材に 50 μm の銅テ ープを貼り合わせて補強する構造を検討し,要素コイル試験 で検証してきた。その結果,許容剥離応力のばらつきに改善 は見られたものの、補強するだけでは劣化を完全に回避する には至らなかった。そこで、 巻線部を各ターンで分割すること で径方向応力を限りなくゼロにする構成を採用することとした。 具体的には,離形処理したポリイミドテープを線材と共巻して 樹脂含浸することで, 全ターンで分割した構造となっている。

3.6積層コイル試作・評価

全ターン分割コイルの有効性を検証するため、Table1 に 示したシングルパンケーキコイル6枚を積層したコイルを試作 し,通電試験を実施した。試作した6積層コイルをFig.1に示 す。6 積層コイルには、通常の銅メッキ線材と銅テープで補強 した線材の2種類を使用した。各シングルパンケーキコイルに は、厚さ 0.25 mm の高純度アルミ板をエポキシ樹脂で貼り付 け、高純度アルミ板の端部をGM冷凍機の2段冷却ステージ に接続してコイルを冷却した。各シングルパンケーキコイルの 最外周に電圧タップを取り付け、2 積層コイル(#1-#2, #3-#4, #5-#6)の両端電圧を測定した。伝導冷却試験前に実施した 液体窒素中での通電試験結果を Fig.2 に示し, 伝導冷却 20 Kでの通電試験結果をFig.3に示す。液体窒素中および伝導 冷却においても低電界領域まで良好な超電導特性を有して おり,劣化がないことを確認した。また,コイル温度 20 K にお いては, 最大 462 A まで通電し, 中心磁場 4.7 T(最大発生磁 場 7.5 T)においても安定に通電可能であることを確認した。

4. まとめ

巻線部各ターンを分割する方式の有効性を検証するため, 6 積層コイルを試作し,液体窒素中および伝導冷却にて通電 試験した結果,良好な超電導特性を有することを確認した。 今後は,実機サイズのパンケーキコイルで本方式の有効性を 検証し,実機コイル製作を進める。

謝辞:本研究の一部は科学研究費補助金(基盤A)による 補助を受けています。

Table1.	Specifications	of single	pancake	coils
---------	----------------	-----------	---------	-------

Parameter	#1, #3, #5	#2, #4, #6
Stabilizer	Electroplated copper	Electroplated copper
		+ copper tape
Tape width	5 mm	5 mm
Tape thickness	0.12 mm	0.17 mm
Inner diameter	96 mm	96 mm
Outer diameter	172 mm	172 mm
Turns	208	160
Tape length	87 m	68 m

Fig.1 Photograph of six stacked pancake coils

Fig.2 V-I characteristics of six stacked pancake coils at 77 K

Fig.3 V-I characteristics of six stacked pancake coils at 20 K

高強度 BSCCO 導体による無冷媒 25T 超伝導マグネット用内挿コイルの設計検討

Insert coil design for a cryogen-free 25T superconducting magnet by high strength BSCCO conductor

<u>花井</u>哲, 根塚 隼人, 土橋 隆博, 瀧上 浩幸, 井岡 茂(東芝);渡辺 和雄, 淡路 智, 小黒 英俊(東北大) <u>HANAI Satoshi</u>, NEZUKA Hayato, TSUCHIHASHI Takahiro, TAKIGAMI Hiroyuki, IOKA Shigeru (Toshiba); WATANABE Kazuo, AWAJI Satoshi, OGURO Hidetoshi (Tohoku UNIV.) E-mail: satoshi.hanai@toshiba.co.jp

1. はじめに

東北大学金属材料研究所では、無冷媒25T 超伝導マグ ネット(以下 25T-CSM)の建設を進めている。本マグネットは、 高温超伝導コイルと低温超伝導コイルを組み合わせること により、25T の定常高磁界を発生させるものであり、超伝導 導体には高強度でかつ高い超伝導特性を有することが求め られる。

これまで高温超伝導導体としては、ReBCO線材を適用 することで開発を進めてきているが[1]、最近になって、高強 度の BSCCO線材が開発されたことから、この高強度 BSCCO線材を用いた 25T-CSM 用内挿コイルの成立性に ついても設計検討を行ったので、紹介する。

2. 高強度 BSCCO 線材による内挿コイルの設計検討

2012年度にアップグレードした無冷媒 20T 超伝導マグネ ット用内挿コイルに採用した BSCCO 線材は、銅合金で強化 されたもので、250MPa の許容引張り強度(77K)を有するもの であったが、今回開発を進めている 25T-CSM 用内挿コイル 用導体としては強度不足であった。ところが、今年になり Ni 合金で強化され、400MPa 以上の許容引張り強度(77K)を有 する新しい高強度 BSCCO 線材が開発されたため、この線 材を用いてあらためて 25T-CSM 用内挿コイルの設計検討 を実施した。

設計検討の結果をTable 1に示す。Table 1には、比較の ため、ReBCO線材を用いて設計した 25T-CSM 用内挿コイ ルのパラメータを併記した。シングルパンケーキコイルを積 層、内外径を接続し、ボルトで上下方向にクランプする ReBCO コイルに対して、ダブルパンケーキコイルを積層し、 エポキシ樹脂で固めた Bi コイルは、径方向にゆとりがあり、 コイル高さが低くできるため、起磁力は 4%程度小さくなる。

また、線材が厚く、定格電流値も大きいことから、コイル のスペース効率が高くなり、導体電流密度は、ReBCO コイ ルの72%に下がり、同時に発生電磁応力も ReBCO コイルの 72%に低減される。

Table 1 Coil	parameter	of HTS insert	coil for 25T-	CSM
--------------	-----------	---------------	---------------	-----

Coil	Bi coil	ReBCO coil
Superconductor	Bi2223	ReBCO
Wire dimension without insulation (mm)	4.5×0.32	5×0.13
Inner radius (mm)	48	51
Outer radius (mm)	139.3	138.0
Coil height (mm)	391.4	408.0
Number of turns	17784	29580
Ampere turn (MA)	3.98	4.14
Operating current (A)	224	140
Current density of conductor (MA/m ²)	156	215
Current density of coil (MA/m2)	112	117
Magnetic field contribution (T)	11.5	11.5
Maximum field (T)	25.6	25.7
Operating temperature (K)	10	10
Load factor (%)	89	77
Hoop stress (MPa)	330	455
Compressive stress (MPa)	32	35

BSCCO 線材の Ic-B-T 特性と BSCCO 線材による 25T-CSM 用内挿コイルの運転ポイントを Fig. 1 に示す。 ReBCO 線材を用いたときの設計と比較すると余裕が小さく なるものの、Tcs>20K を確保しており、通常の運転温度 10K に対しては十分な余裕がある。

Fig. 2 は、HTS コイルを径方向に分割することによる応力 低減効果を示したものであるが、図に示すように径方向に 3 分割以上にすることにより、フープ応力を 350MPa 以下にで き、採用可能なレベルに応力低減できる。

Fig. 1 Ic-B-T property of BSCCO conductor and operating point of 25T-CSM insert coil (T. Nakashima, Pre-print ASC2014)

Fig. 2 Relation between number of coil partitions and coil hoop stress

3. まとめ

上記に示すように新しく開発された Ni 合金により強化さ れた高強度 BSCCO 線材を用いて、25T-CSM 用内挿コイル が設計可能であることが、確認できた。

参考文献

 S. Miyazaki, et al.: "Design of a REBCO Insert Coil for a Cryogen-free 25 T Superconducting Magnet" Pre-print ASC 2014