低温容器外周のピックアップコイル群を使う 高温超伝導コイル巻線で発生する常伝導領域の非接触型検出法 Non-contact Detectors of Normal Zone Appearing in Superconducting Coil Windings by Using Pickup Coils Put Outside a Cryostat

<u>川越 明史</u>, 藤岡 直人, 森部 裕章, 住吉 文夫(鹿児島大学) <u>AKIFUMI Kawagoe</u>, FUJIOKA Naoto, MORIBE Hiroaki, SUMIYOSHI Fumio (Kagoshima University); E-mail: kawagoe@eee.kagoshi-u.ac.jp

1. はじめに

高温超伝導コイルを安全に運転するは、巻線温度が局所 的に上昇するホットスポットなどの異常を測定することのできる 測定法が必要である。我々は、高温超伝導コイルに発生する 局所的な異常を非接触で測定できる新しい測定法を提案し ている^{1,2)}。この測定法の特長は、保冷容器外から測定するこ とができるため、安全でメンテナンス性に優れていることである。 これまでに、低温容器外周を覆った金属シート表面のポイン チングベクトルを測定する方法と、金属シートを用いず、ピック アップコイルのみを用いる方法を提案している。今回は、これ らの測定方法の原理を理論的に説明する。

2. 金属シートを用いる非接触型異常測定法とその問題点

金属シートを用いる非接触型異常測定方法では, Fig.1 に 示すように,超伝導コイルを金属シートで覆い,その表面のポ インチングベクトルを測定する。この測定法では,金属表面に 設置したポテンシャルリードで電界を測定する。ここでは,軸 方向磁界と周方向電界から求められるポインチングベクトル のみを考える。

Fig. 2 は, Fig.1 をコイル軸から見た平面図であり, 保冷容器は省いている。ループ1は金属シートを, ループ2はポテンシャルリードを示している。いずれのループも抵抗率の高い金属製であり, 導電率はそれぞれσ₁, σ₂とする。またループ内の電流によって電磁界は乱されないとし, 電磁界は軸対称とする。

ループ1の電界は、誘導電界 E_{1i} と静電界 E_{1s} で表されるので、ループ1の電界を一周線積分すると、次式が成り立つ。

$$\frac{1}{\sigma_1} \oint \boldsymbol{J}_1 \cdot \mathbf{ds} = \oint \boldsymbol{E}_1 \cdot \mathbf{ds} = \oint \left(\boldsymbol{E}_{1i} + \boldsymbol{E}_{1s} \right) \cdot \mathbf{ds}$$
(1)

ここで J_1 は、ループ 1 に流れる電流の電流密度である。同様 の式はループに 2 についても成り立つので、ループ 2 を一周 する電流はゼロであること、弧 A_1B_1 上の電流は J_1 と同じにな ることを考慮すると、ループ 2 上の誘導電界 E_{2i} と静電界 E_{2s} を使って、

$$\frac{1}{\sigma_1} |J_1| \int_{A_1}^{B_1} \cdot \mathrm{d}s = \oint E_{2s} \cdot \mathrm{d}s + \oint E_{2s} \cdot \mathrm{d}s \tag{2}$$

と書ける。したがって、 点 A2 と点 A2 における静電ポテン

Fig.1 (a) Example of sensor arrangements to measure the Poynting's vector around superconducting coils, (b) principle of non-contact measurement of local electric fields.

シャルをそれぞれ $\phi_2(A_2'), \phi_2(A_2)$ とし、ループ1が閉じていることから $E_{1s}=0$ であることを考慮して(1)式も使うと、(2)式は、

$$E_{1i}r_0\theta_0 = -\frac{d\Phi_1}{dt}\frac{\theta_0}{2\pi} = -\frac{d\Phi_2}{dt} - [\phi_2(A_2') - \phi(A_2)]$$
(4)

と書ける。したがって、 $t << r_0$ であれば $\Phi_2 \cong 0$ となるので、 $E_{1i}r_0\theta_0 \cong -\left[\phi_2(A_2') - \phi(A_2)\right]$ (5)

となる。(5)式は, 点 A2と点 A2の電位差として弧 B1A1上の 電界が測定できることを表している。

この測定法の問題点は、局所的な測定を行なうために0。を 小さくすると信号電圧が小さくなることである。

3. ピックアップコイルを用いる非接触型異常測定法の原理

上記の問題点を解決したピックアップコイルのみを用いる 新しい非接触型異常測定法について説明する。この方法で は、Fig. 2(a)に示すようなピックアップコイルのみを用いて、超 伝導コイル周辺のポインチングベクトルを測定する。

Fig. 2(b)は, Fig.1(b)と同じ方向から見た図であり、ポテンシャルリードを、電磁エネルギーの流れが無視できるほど小さな場所まで r 方向に引き伸ばしている。また、孤 A₀B₀を切ってループ1をオープン回路にしている。

ループ 1 がオープンであることから, J₁ はゼロであることを 考慮すると, (4)式は,

$$-\frac{\mathrm{d}\Phi_2}{\mathrm{d}t} = \phi(\mathrm{A}_2') - \phi(\mathrm{A}_2) \tag{6}$$

と書ける。 $P>r_0$ のとき、 $\Phi_1 \cdot \theta_0 / 2\pi + \Phi_2 \cong 0$ となるので、(6)式は、

$$\frac{\mathrm{d}\Phi_1}{\mathrm{d}t}\frac{\theta_0}{2\pi} = -E_{1i}r_0\theta_0 \cong \phi(\mathrm{A}_2') - \phi(\mathrm{A}_2) \tag{7}$$

と書くことができ、弧 B₁A₁上の電界を測定できることがわかる。 このとき、弧 A₀A₁,弧 B₀B₁は取り払うことができる。したがって、 Fig.2(a)で示すようなピックアップコイルで電界を測定すること ができるので、ターン数を増やすことで信号電圧の増幅が可 能になり、局所的な電界を高感度で測定することができる。 参考文献

- M. Tokuda, et al.: Abstracts of CSJ Conference, Vol. 76 (2007) p. 207
- T. Kimoto, et al.: Abstracts of CSJ Conference, Vol. 81 (2010) p. 199

Fig. 2 (a) Pickup coil arrangements to measure the Poynting's vector around superconducting coils, (b) principle of non-contact measurement of local electric fields.

— 177 —

ポインチングベクトル法による超伝導変圧器の運転モニタリングシステムの開発4 -誘導性負荷変動中の常伝導転移の検出-

Development of a Monitoring System of Superconducting Transformer by Using Poynting's vector method 4 -Detection of normal zone appearing in windings during inductive load change -

小坂 亮大, 濱田 佳志, 川越 明史, 住吉 文夫(鹿児島大学);岡元 洋(九州電力) KOSAKA Ryota, HAMADA Keishi, KAWAGOE Akifumi, SUMIYOSHI Fumio (Kagoshima University); OKAMOTO Hiroshi (Kyushu Electric Power Co.,Inc.) E-mail: k8197118@kadai.jp

1. はじめに

実用段階の超伝導変圧器は、巻線状態を常に監視してお くことが必要である。また、超伝導変圧器は負荷が変動する際 に、変圧器の有効電力が変化する。そのため、有効電力が変 化する中でも、巻線に生じた異常を確実に検出するシステム が必要である。そこで我々は、ピックアップコイルを用いて損 失エネルギーフロー密度を室温空間から測定する非接触型 のモニタリングシステムを提案している。

これまでに、鉄心を持つ変圧器に本監視システムが適用 可能であること、一次側巻線と二次側巻線で発生する異常を 判別可能であることを実証している[1][2]。また、抵抗性負荷 の変動中に超伝導変圧器巻線の異常が検出できることを実 証している[3]。今回は、超伝導変圧器の二次側に接続した 誘導性負荷を変動させた時、巻線異常の検出が可能である ことを実験的に検討したので、その結果について報告する。

2. 本監視システムの測定方法と装置概要

我々の提案しているポインチングベクトル法では、電界測 定用ピックアップコイルと磁界測定用ピックアップコイルで局 所的な電界と磁界を測定し、それらの外積からポインチング ベクトルを求めている。さらに、磁界測定用ピックアップコイル の電圧を用いて、電界測定用ピックアップコイルの電圧から誘 導性の成分をキャンセルして電界測定の精度を高めている。 これまで、負荷変動と巻線異常を区別するために、超伝導変 圧器の上部と下部の対称な位置のポインチングベクトルを同 時に測定し、その差分を監視する方法を考案している。差分 を監視することで、測定センサーの近くで異常が起きた場合、 その異常を検出できると考えられる。

装置の概要を説明する。変圧器は、高さ約 100mm、一次 側内径 80mm、二次側内径 110mm である。定格容量は、 500VA である。巻線には、臨界電流が 88A の高強度 Bi-2223 多芯テープ線材を使用した。

3. 実験条件及び実験結果

実験手順を説明する。超伝導変圧器に 20Ams、50Hz の交流電流を定電圧モードで通電し、変圧器周辺のポインチング ベクトルを測定した。測定センサーは、コイル中心の位置から 軸方向に+30mmの場所に System 1、-30mmの場所に System 2 を設置した。負荷は、抵抗性負荷を用いた定格運転から誘 導性負荷を接続することで、二次側負荷の力率を1.0から0.7 まで変化させ、同時に有効電力も変化させた。巻線部の異常 は、電磁界を乱さないように液体窒素の自然蒸発によってコ イル上部から発生させた。

巻線状態が正常である時の実験結果を Fig. 1 に示す。 System 1とSystem 2の差分は、正常時の損失エネルギーフロ 一密度の比率で補正して求めている。Fig. 1(a)から、センサー で測定した損失エネルギーフロー密度が負荷変動に伴って 大きく変動していることがわかる。そのため、巻線の異常を検 出できない。しかし、Fig. 1(b)の差分は変化していないので、 巻線状態は正常であると判断できる。次に、異常発生時の差 分の測定結果を Fig. 2 に示す。差分に大きい変化が見られる ので、巻線で発生した異常を検出できることがわかる。以上よ り、本システムで誘導性負荷の変動中に、超伝導変圧器の巻 線部に発生した異常を検出できることがわかった。

4. まとめ

超伝導変圧器の二次側に誘導性負荷を設置し、実際に 巻線異常の検出試験を行った。その結果、誘導性負荷の変 動中に、巻線部で発生した異常を検出できることを実証した。 このことから、超伝導変圧器の運転監視装置として、本監視シ ステムが有効であることを示した。

Fig. 2 Experimental results for unusual condition

参考文献

- K. Habu, et al.: Abstracts of CSJ Conference, Vol. 81 (2009) p.121
- K. Habu, et al.: Abstracts of CSJ Conference, Vol. 82 (2010) p.135
- R. Kosaka, et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.152

伝導冷却型4T級Y系コイルの通電特性

Test results of conduction-cooled 4 T-class coil wound with YBCO tapes

<u>宮崎 寛史</u>, 岩井 貞憲, 戸坂 泰造, 田崎 賢司, 花井 哲, 浦田 昌身, 井岡 茂, 石井 祐介(東芝) <u>MIYAZAKI Hiroshi</u>, IWAI Sadanori, TOSAKA Taizo, TASAKI Kenji, HANAI Satoshi, URATA Masami, IOKA Shigeru, ISHII Yusuke (TOSHIBA) E-mail: hiroshi17.miyazaki@toshiba.co.jp

1. はじめに

Y 系超電導コイルの実機適用に向け、伝導冷却システム において、中心磁場 4 T 以上発生可能な超電導コイルの開 発を進めている. コイル開発では、樹脂含浸による劣化のな いことおよびコイル電流-電圧特性を定量的に予測できること が重要である. これまで、磁場特性の向上が見込まれる人工 ピン入り Y 系線材を使用して、樹脂含浸による劣化のないシ ングルパンケーキコイルを 12 枚積層したコイルを試作し、コイ ル温度 20 K において中心磁場 4.7 T の発生に成功した[1]. 今回、12 積層コイルの温度を 20 K から 60 K まで 10 K 刻み で変化させて通電試験を実施し、コイル電流-電圧特性を実 験と解析の両面から評価したので報告する.

2. コイル諸元および伝導冷却システム構成

使用した線材の諸元を Table 1 に、12 積層コイルに使用し たシングルパンケーキコイルの諸元および液体窒素中での通 電試験結果より測定したコイル Ic(10⁻⁶ V/cm 定義)およびコイ ルn値(10⁻⁸~10⁻⁷ V/cm 定義)を Table 2 に示す.ここで、試作 したコイルは含浸前後でコイル電流-電圧特性を比較して、樹 脂含浸による劣化が無いことを確認している. Fig.1 に示した 12 積層コイルはコイル内周および外周で電気的に接続され ており、2 枚のパンケーキコイルごとに厚さ 0.25 mm のアルミ 板を取り付け、各アルミ板の先端を GM 冷凍機の 2 段冷却ス テージに接続してコイルを冷却した.コイル温度は 2 段冷却ス テージに取り付けたヒータにより制御し、発生電圧は各パンケ ーキコイルの両端で測定した.

3. 伝導冷却試験

12 積層コイルの温度を20 Kから60 Kまで10 K刻みで変 化させて通電試験を実施し、各パンケーキコイルの両端電圧 を測定した.全温度領域で電圧発生が最も大きかったコイル #3 の電流-電圧特性をFig.2 に示す.また、Fig.2 には、短尺 線材の臨界電流特性およびコイル磁場分布から計算した電 流-電圧特性も併せて示している.ここで、コイル電流-電圧特 性を計算する際には、線材の長手方向のIcのばらつきおよび ロットによる磁場角度依存性の違いを考慮して計算した.10⁻⁷ V/cm 発生時の電流値で実験値と計算値を比較すると、最も 差が大きかった30 Kにおいても、実験値224.8 Aに対して、 計算値210.5 Aと6.8%以内の差で一致しており、コイル電流-電圧特性を定量的に予測できることを確認した.

4. まとめ

人工ピン入り線材を使用した12積層コイルを試作し、伝導 冷却中で通電試験を実施した.幅広い温度領域で良好な超 電導特性を有していることを確認し、線材の長手方向の Ic の ばらつきやロットによる磁場角度依存性を考慮することにより コイル電流-電圧特性を定量的に予測できることを示した.引 き続き、Y系コイルの実機適用に向けて、コイルの高磁場化お よび大型化を目指した開発を進めていく.

Table 1 Specification of YBCO tape				
Width (mm)	4			
Thickness (mm)	0.1			
Copper stabilizer thickness (mm)	0.04			
Substrate	Hastelloy®			
Туре	Zr-doped wire			
Ic@77 K, self field (A)	86~112			

Table 2 Main features of impregnated pancake coils					
Coil No.	#1	#2	#3	#4	#5
Inner dia. (mm)	50	50	50	50	50
Outer dia. (mm)	90	89	87	88	89
Hight (mm)	4.9	4.9	4.9	4.9	4.9
Turns	111	111	111	111	111
Tape length (m)	24	24	24	24	24

51

45

48

Coil Ic (A)

48

48

N value	Э	24	24	26	31	26
#6	#7	#8	#9	#10	#11	#12
50	50	50	50	50	50	50
89	89	89	88	88	88	88
4.9	4.9	4.9	4.9	4.9	4.9	4.9
111	111	111	111	111	111	111
24	24	24	24	24	24	24
48	55	55	52	49	49	49
26	27	29	23	25	24	22

Fig.1 A stack of 12 single pancake coils

Fig.2 E-I characteristics of #3 pancake coil of a stack of 12 single pancake coils from 20 K to 60 K

参考文献

 H. Miyazaki, et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.154

— 179 —

複数のイットリウム系超電導線材内に発生する遮蔽電流が生み出す 磁場分布とその時間変化

Temporal variation of magnetic field distribution generated by screening current flowing in multiple coated conductors

<u>宮副 照久</u>,中西 泰章,関野 正樹,大崎 博之(東京大学);木吉 司(物質・材料研究機構) <u>MIYAZOE Akihisa</u>, NAKANISHI Yasuaki, SEKINO Masaki, OHSAKI Hiroyuki (The Univ. of Tokyo); KIYOSHI Tsukasa (NIMS) E-mail: miyazoe@ohsaki.k.u-tokyo.ac.jp

1. はじめに

テープ形状のイットリウム(Y)系線材によって作製される 超電導コイルの発生磁場は、線材のテープ面を貫く磁束が もたらす遮蔽電流によって影響を受ける[1]。遮蔽電流の大き さは臨界電流に相当するものであり、磁束クリープによって その遮蔽電流は減衰する。とくに高い磁場均一度や時間的 安定度が要求される超電導コイルにおいては重要な課題で ある。本研究では複数の短尺Y系線材に外部磁場を印加し、 Y系線材内に発生する磁場分布とその磁場の時間変化につ いて評価した。

2. 実験方法

液体ヘリウム中で冷却した複数の Y 系線材に対して テープ面に垂直方向に外部磁場を超電導マグネットにより 印加した。線材上でホールセンサを走査し、遮蔽電流が発生 する磁場の分布を測定した。ホールセンサはY 系線材に接す るように配置した。ホールセンサの表面とアクティブエリアまで の距離は 0.30 mm である。Fig. 1 に 3 枚の Y 系線材を並列さ せたときの磁場分布測定の概要図を示す。使用したY 系線材 は 4.1 mm 幅の SuperPower 社製の線材である。中央に置いた 線材の幅中心を x = 0 mm と定義した。

3. 並列枚数による磁場の変化

Fig. 2 に外部磁場を 0 T から 1.0 T に励磁した際、遮蔽 電流により発生する磁場分布の並列枚数に対する変化を示 す。丸は一枚の線材における実測値、四角は三枚の線材を 並列に並べた時の実測値を示す。一枚の線材において測定 した磁場分布の結果から Tikhonovの正則化を用いて線材内 の電流分布を求めた[2]。一枚の線材内の電流分布が三枚の 線材それぞれで等しく分布すると仮定したときの磁場分布の 計算結果を破線で示す。計算値と実測値はよく一致しており、 一層において並列したときの遮蔽電流による磁場の分布は並 列した線間で相互作用が見られないことを示している。

4. 積層枚数による遮蔽電流が発生する磁場の時間変化

Fig. 3 に並列させた Y 系線材の遮蔽電流が発生する磁場 の時間変化を示す。ここでは外部磁場が0 Tまで減少したとき の線材内の捕捉磁場を測定している。外部磁場印加用の超 電導マグネットの磁場が0 T になったときをt = 0 s とした。丸 は三枚の線材を一層に並列させたときの磁場分布の時間変 化を示しており、ダイヤは三枚の並列させた線材を三層に積 層したときの磁場分布の時間変化を示している。それぞれの t = 3000 s までの時間変化を示している。磁束密度が大きい 箇所ほど減衰が大きいことを示している。

5. まとめ

積層、配列させた Y 系線材上の遮蔽電流が発生する磁場 の分布およびその時間変化を測定した。一層に三枚並列さ せた磁場分布については一枚の線材の遮蔽電流から示され ることが確認された。

Fig.1 Setup for measurement of screening-current-induced field distribution

Fig.2 Variation of magnetic field distribution generated by screening current flowing in coated conductors

Fig.3 Temporal variation of remnant magnetic field distribution generated by screening current.

参考文献

1. D. Uglietti, et al.: Supercond. Sci. Technol., Vol. 23 (2010) 115002

2. A. Miyazoe, et al: IEEE Trans. Appl. Supercond., in press

— 180 —

高温超伝導材料を利用した次世代 NMR 技術の開発;高電流密度コイル化技術の 構築(3) — 接続部を有する REBCO コイルの耐電磁力試験—

Development of the next-generation NMR technology using HTS materials; For achievement of HTS coil with high operating current density (3) – Experimental results of REBCO coil including a joint between conductors under electro-magnetic forces –

松本 真治,木吉 司(物材機構);大塚 昭弘,濱田 衛(JASTEC);

前田 秀明(理研);柳澤 吉紀,中込 秀樹(千葉大学);末松 浩人(日本電子)

MATSUMOTO Shinji, KIYOSHI Tsukasa (NIMS); OTSUKA Akihiro, HAMADA Mamoru (JASTEC);

MAEDA Hideaki (Riken); YANAGISAWA Yoshinori, NAKAGOME Hideki (Chiba Univ.), SUEMATSU Hiroto (JEOL Ltd.)

E-mail: matsumoto.shinji@nims.go.jp

1. はじめに

科学技術振興機構産学イノベーション加速事業「戦略的 イノベーション創出推進|研究開発テーマ「超伝導システムに よる先進エネルギー・エレクトロニクス産業の創出」において、 プロジェクト「高温超伝導材料を利用した次世代NMR技術の 開発」を遂行している。プロジェクトでは、超伝導マグネットお よびプローブ(検出器)に高温超伝導材料を適用することで、 性能と利便性を大幅に向上させた次世代NMRシステムの開 発を目指している [1]。これまで、REBCO 線材により密巻きコ イルを製作し、17 T 中で試験を行い、高温超伝導線材(HTS) の高電流密度コイル化技術の構築を進めてきた。 HASTELLOY[®]基板を持つ2種類の線材を使用し試験用 REBCO コイル(#1:SuperPower Inc.線材、#2:Fujikura 線材)を 製作、耐電磁力試験を行った。コイル#1 は、試験中にクエン チし、線材が破断した [2]。コイル#1 と同タイプの線材でのコ イル化技術の確立のため、コイル#1 を分解検査し、考えられ るクエンチの原因を改善させた2個の試験コイルを製作した。 また、実機用コイルの場合、コイル中での線材間接続は不可 避であると考えられるため、一方のコイルは内部に線材間接 続を有するものを製作した。これら新たに製作した2個のコイ ルについて、17 T 中で行った耐電磁力試験結果を報告す る。

2. 耐電磁力試験結果

REBCO コイルの耐電磁力試験は、直径 139 mm コールド ボア中に、17 Tを発生させる超伝導マグネットを用いて行った。 製作した耐電磁力試験用REBCOコイル(#3, #4)の諸元を TABLE I に示す。コイル#3 は、第4層の途中に線材間接続を 有する。線材の接続部は、HASTELLOY[®]基板側がコイル外 側となるように接続された。

TABLE IPARAMETERS OF LAYER WINDINGREBCO COILS #3, #4

#3	#4		
REBCO/Sup	REBCO/SuperPower Inc.		
$4.00 \text{ mm} \times 0.11 \text{ mm}$			
$4.10 \text{ mm} \times 0.21 \text{ mm}$			
Layer			
78.9 mm	79.1 mm		
83.5 mm	82.4 mm		
100.09 mm 96.60m			
8 layers 8 layer			
184 turns	180.7 turns		
47.00 m (*1)	46.00 m		
Wax			
	#3 REBCO/Sup 4.00 mm > 4.10 mm > Lay 78.9 mm 83.5 mm 100.09 mm 8 layers 184 turns 47.00 m (*1) W		

(*1) joint in the 4th layer

コイル#1 は、17 T 中の試験において、通電電流が 200 A 付近でコイル電圧の増大の異常が見られ、その後、10 T 中の 試験においてクエンチした [2]。コイル内部に線材間接続を 有するコイル#3 は、17 T 中で、最大 BJR が 400 MPaを超える 268.9 A までの通電試験をおこなったが、コイル電圧の上昇は 見られなかった。一方、コイル#4 は、コイル#1 と同じように、17 T 中の試験で、電圧の上昇が見られた(Fig.1)。コイル#4 で、 コイル#1 同様、コイル電圧が増大した原因を検討する必要が ある。

Fig.1 Coil voltage of REBCO coil (a) #3 at $B_{ex}=17$ T, and (b) #4 at $B_{ex}=17$ T.

謝辞

本研究は、産学イノベーション加速事業「戦略的イノベーション創出推進」として、科学技術振興機構からの委託により実施したものである。

参考文献

- H. Suematsu: Abstracts of CSJ Conference, Vol. 82 (2010) p.185
- S. Matsumoto et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.60; p.61

GdBCO 線材の積層導体を用いた機械的バットジョイントの基礎研究 Fundamental study on mechanical butt joint of stacked GdBCO conductor

大日方 達也,伊藤 悟,橋爪 秀利(東北大)

OHINATA Tatsuya, ITO Satoshi, HASHIZUME Hidetoshi (Tohoku Univ.)

E-mail: tohi@karma.qse.tohoku.ac.jp

1. はじめに

本研究グループでは核融合炉の建設コスト、メンテナンスコ ストを削減するため、マグネットを分割製造し着脱可能とする 分割型高温超伝導マグネットを提案している。そのための基 礎研究として行ってきた銅ジャケット付 BSCCO 2223 積層導体 の機械的バットジョイントの研究において接合面へ均一な接 触圧力を与えることで1 kA 級導体で接合抵抗を140 nΩまで 低減できることが示されている[1]。しかしながら、核融合炉の ような強磁場環境での利用を考えた場合、ReBCO 系導体の機 械的バットジョイントの抵抗特性の取得を目的として、GdBCO 線材を用いて製作した積層導体の機械的バットジョイントの試 験を行った。

2. 実験

試験用導体としては, Fig.1 に示すような長手方向に対して 45 度の傾きのある接合面を持つ銅ジャケット付 GdBCO 積層 導体 (GdBCO 線材 4 層, I_c = 570 A at 77K, self field)と, 比較 のため銅のみで製作した銅製導体を用いた。なお, 接合試験 用 GdBCO 積層導体は, 1 本の GdBCO 積層導体を製作し, 臨界電流を測定した後に, 切断して製作した。

Fig.2に実験体系を示す。本実験体系では接合部に垂直方向と水平方向から接合力を負荷でき,垂直方向接合力の値はロードセルで測定が可能である。水平方向接合力はスタッドボルトをナットで締め上げることで発生させており、今回の試験ではナットの締結トルクを1.6 Nmに固定した。比較のため、接合面を直接接合(Dry Joint)させた場合、厚さ 0.01 mm の In 箔を接合面間に挿入した場合についてそれぞれ接合試験を行った。電圧端子①-②間を測定することで積層導体の電圧降下(臨界電流)、電圧端子②-③間の電圧を測定することで接合抵抗を評価した。

Fig.3 に接合試験により得られた印加電流 200 A 時の垂直 方向接合応力(最大 120 MPa)と接合抵抗の関係を示す。結 果より、In 箔挿入接合の方が接合抵抗を低減できることが分 かるが、過去の研究で行った BSCCO 2223 積層導体や、銅製 導体の接合抵抗よりも大きい値であることが確認できる。今回 用いた銅製導体の断面サイズは幅 6.5 mm × 厚さ 5.5 mm, 過去の研究で用いた BSCCO 2223 積層導体の断面サイズは 幅 6.5 mm × 厚さ 5.5 mm(BSCCO 2223 線材部の幅 4.5 mm × 厚さ 2.5 mm)であり、GdBCO 積層導体の断面積とは異な るが、導体の種類による断面積の差異を考慮しても GdBCO 積層導体の接合抵抗が大きい。すなわち GdBCO線材同士の 接合抵抗が大きいことを示している。

Fig.4 に直接接合試験の際の電流-電圧特性(垂直接合応 力 69.6 MPa 時),および切断前の積層導体の電流-電圧特性 を示す。結果より積層導体を接合する事によって,積層導体 の臨界電流値が大幅に低減したことが確認できる(*I_c* = 約 300 A)。これは,積層した各 GdBCO線材に流れる電流に偏りが生 じたためであると考えられる。また,接合試験では低電流時に 電圧が線形上昇することが確認できるが,これは銅ジャケット に電流が分流したことを意味している。これらの現象は GdBCO線材同士の接合抵抗が銅ジャケット同士の接合抵抗 より大幅に大きいため,接合部において電流が銅ジャケットを 迂回するよう経路が存在する事に起因すると考えられる。

3. まとめ

GdBCO 積層導体を用いて機械的バットジョイント試験を行っ た結果,接合抵抗は過去の研究で得られた BSCCO 2223 導 体での値よりも大幅に大きい値となった。接合抵抗を低減する ため、今後は導体に流れる電流の分流状態を数値解析によ って定量的に評価し、積層導体の設計を改良する予定であ る。

参考文献

 S. Ito, et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.263

Fig.4 Voltage Drop of a Stacked GdBCO Conductor

Bi 系ならびに Y 系高温超電導導体の厚み方向熱拡散率に関する検討 Study on thickness-direction thermal diffusivity of Bi- and Y-system HTS conductors

<u>中村</u>武恒,小山友一,山川宏(京大);船木一幸(JAXA);雨宮尚之(京大) NAKAMURA Taketsune, KOYAMA Yuichi, YAMAKAWA Hiroshi (Kyoto Univ.); FUNAKI Ikkoh (JAXA);

AMEMIYA Naoyuki (Kyoto Univ.)

E-mail: tk_naka@kuee.kyoto-u.ac.jp

1. はじめに

我々は、深宇宙探査を目標とし、太陽風プラズマと高温超電 導コイルが作るダイポール磁界の相互作用を利用した磁気プラ ズマセイルの検討を実施している[1]。既報告では、Y系高温超 電導薄膜テープ材の厚み方向熱拡散率について、実験的か つ解析的検討を実施した[2]。この結果は、磁気プラズマセイル で想定している伝導冷却を基本とするマグネット設計に関して 非常に重要な知見であり、つまり熱設計に際して考慮すべき制 約条件を与える。

本講演では、もう1種類の市販高温超電導線材として、Bi系 テープ材についても同様の検討を実施した。即ち、Bi系とY系 では線材構造が大きく異なることから、それらテープ材を適用し たマグネット熱設計に際して指針が大きく異なってくると予測さ れる。そこで、Bi系ならびにY系導体における厚み方向熱拡散 率を実験ならびに数値解析に基づいて比較検討した。

2. 実験ならびに解析方法

対象とした高温超電導テープ材は、Y 系テープ材 (SCS-3050, Superpower 社製)ならびに Bi 系テープ材 (DI-BSCCO Type S, 住友電工製)である。表1には、使用した テープ材の厚みを示す。図1には、試験システムのセットアップ 図を示す。上記テープ材をポリイミドテープ(25 µm 厚)で絶縁 し、5 枚積層してバンドル導体とした。このバンドル導体の上面 にバンドヒータを熱伝導グリースで接着した後、GM 冷凍機のコ ールドヘッド上に図のように設置した。

また,実験結果から熱拡散率を計算すべく,図 2 のような解 析モデルを考えた。即ち,導体のテープ材長手方向における 温度分布は均一とし,一次元モデルを考えて熱平衡方程式を 離散化して数値解析した。

3. 結果と考察

まず,Y系ならびにBi系高温超電導バンドル導体が所定の 温度に到達後,ヒータ発熱を与えて導体両面の温度の時間変 化を測定した。また,Cuのダミー導体にて同様の測定を実施し, そのデータをもとに見積もったヒーター導体間の熱抵抗を熱解 析に用いた。図3には、実験ならびに解析によって評価した熱 拡散率の温度依存性を示す。同図から明らかなように、Y系テ ープ材の熱拡散率はBi系に比較して非常に小さいように見え る。実験・解析の具体的方法他、詳細は当日に報告する。

参考文献

- H. Yamakawa, I. Funaki et al.: Acta Astronautica, vol. 59, (2006) pp.777-784
- T. Nakamura, et al.: Abstracts of CSJ Conference, vol. 83 (2010) p. 248

Table 1 Thicknesses of the samples

種類	Cu	Bi	Y
テープ1本当りの厚み[mm]	0.11	0.18	0.1 1
5 枚バンドル導体厚 [mm]	1.2	1.6	1.2

Fig. 2 Schematic diagram of 1D thermal analysis model.

Fig. 3 Estimated thermal diffusivity.

TFA-MOD 法 YBCO テープ線材を用いた電流リードの開発⑤ (2 kA 級超電導電流リードユニットの作製と通電特性) Development of current lead prepared by the TFA-MOD processed YBCO tapes ⑤ (Transport performance of 2 kA class current lead units)

 百井 雄一、坂井 裕貴、山田 豊、太刀川 恭治(東海大)、

 中西 達尚、引地 康雄、青木 裕治(昭和電線)、田村 仁、三戸 利行(核融合科学研究所)

 ISHII Yuichi, SAKAI Yuki, YAMADA Yutaka, TACHIKAWA Kyoji (Tokai University);

 NAKANISHI Tatsuhisa, HIKICHI Yasuo, AOKI Yuji (SWCC); TAMURA Hitoshi, MITO Toshiyuki (NIFS)

 E-mail:0BAZM005@mail.tokai-u.jp

1. はじめに

前報ではTFA-MOD法により作製したYBCOテープ線材 を5本用いた電流リードユニットを10組使用した集合型 超電導電流リードについて報告を行ったが、本報では更な る通電電流の増大のため、同テープ線材を20本用いた 2kA級超電導電流リードユニットを作製し、通電特性及び 熱侵入量等を評価したので報告する。

2. 実験方法

TFA-MOD 法により作製した YBCO テープ線材は、幅 5 mm、厚さ 100 µm の HastelloyTM 基板上に酸化物の中間層 を経て厚さ 1.5 µm の YBCO 超電導層、その上に 26 µm の Ag 保護層から構成される。電流リードユニットに使用し た 200 本の YBCO 線材は液体窒素中、自己磁場下(@77 K, s.f.)において平均 140 A の臨界電流値を有し、20本1 組と して 10 組の電流リードユニットを作製した。Fig. 1 に試作 した電流リードユニットの外観及び模式図を示す。YBCO 線材 20 本を幅 44 mm、厚さ 1 mm、長さ 164 mm の GFRP と幅 44 mm、厚さ 2 mm、長さ 208 mm の SUS304 板で補 強し、線材両端を Cu 電極にハンダ接合した電流リードユ ニットを 10 組作製した。通電試験は核融合科学研究所に おいて行った。

3. 実験結果および考察

Fig. 2 に 10 組の電流リードユニットの 12µV 発生時(電 界基準1µV/cm)の *Ic* 値を示す。各ユニットの YBCO 線材 において、12 µV 発生時に、最大で 2,480 A、10 組平均で 2,210 A の直流通電(@77 K, s.f.)をすることが出来た。

Fig. 3 に試作した 10 組の 2 kA 級超電導電流リードユニ ットの1つであるユニットHの通電結果 (@77 K, s.f.)を示 す。2,800 A 通電時の各 YBCO 線材の発生電圧 (V_{YBCO}) は平均 8 μ V となり、Cu 電極と各線材の接続抵抗 ($V_{Cu(+)}$ 、 $V_{Cu(-)}$) は約 518 μ V、496 μ V、ユニット全体 ($V_{overall}$) で は 1021 μ V となり、低抵抗接続が実現できた。熱侵入量は YBCO 線材 20 本で 273 mW と計算され、2,000 A の通電電 流では約 137 mW/kA となり、従来のガス冷却型 Cu 電流リ ード(1.2 W/kA)と比較すると約 1/10 程度の値である。

謝辞

本研究は東海大学と昭和電線ケーブルシステム㈱の共 同研究の一部であり、超電導応用基盤技術開発(NEDO)プ ロジェクトの成果を引用している。

Fig. 1 Current lead unit prepared by twenty YBCO tapes.

Fig. 2 Transport current at 77 K and 12μ V on YBCO tapes for the ten current lead units (unit A~J).

Fig. 3 Transport current at 77 K for the current lead unit H.