非超電導線を併設した液体水素用新構造液面計の特性評価

Characterization of a new structure of liquid level sensor

for liquid hydrogen with a non-superconducting wire

小林 弘明,田口 秀之(JAXA);青木 五男(ジェック東理社)

INOUE Takuro, WATANABE Kazuki, KAJIKAWA Kazuhiro (Kyushu University);

KANAZAWA Masaya, YAMADA Yutaka (Tokai University);

KOBAYASHI Hiroaki, TAGUCHI Hideyuki (JAXA); AOKI Itsuo (Jecc Torisha)

E-mail: takuro@sc.kyushu-u.ac.jp

1. はじめに

将来の水素エネルギー社会では、特に輸送や貯蔵の際 に、水素を比較的密度の大きな液体として利用する形態が想 定される。このとき、容器内の液体水素の残量を外部から高 精度に高信頼度をもって判別する必要があるが、そのような 技術はまだ開発されていない。そこで SUS/Fe シースMgB₂線 材を用いた液体水素用液面計を試作し、その動作特性を実 験的に評価したが、ガス温度の影響から出力の再現性が良く なかった[1]。その問題点を解決するため、新構造液面計を考 案した[2]。新構造液面計には、超電導線材と同様の温度依 存性を持つ非超電導線材が必要となる。本研究では、SUS シ ース MgB₂線材とその未熱処理線である非超電導線を用いた 新構造の液面計を試作し、その動作特性を液体へリウム及び 液体水素中で実験的に評価した。

2. 原理

新構造液面計は、従来の超電導式液面計に非超電導線 を平行に配置し構成される。超電導線と非超電導線は回路 的に直列接続する。適度な電流を通電したとき、超電導線は 従来の液面計と同様の挙動を示す。一方、非超電導線は、ガ ス中では超電導線と等しい電圧が得られ、液中では冷媒温度 に応じた電圧が得られる。そこで、両線の電圧の差分をとると、 非超電導線の液中で発生する電圧のみを得ることができる。 液温は一定であるから、差分電圧は、非超電導線の液中の 長さに応じた電圧であるため、液位の判別が可能となる。この ように構成される新構造液面計は、ガスの状態に影響を受け にくいという特徴を有している。

3. 液体ヘリウムを用いた予備実験

線径 0.14 mm の SUS シース MgB₂線材とその未熱処理線 を用いてセンサ長 200 mm の新構造液面計を試作した。超電 導線は In-situ PIT 法により作製し、未熱処理線は線引き加工 後の未熱処理線を使用している[3]。そして、液体ヘリウムを 用いて試作液面計の動作模擬試験を行った。試験は、液体 ヘリウム充填による液位上昇時と自然蒸発による液位下降時 に行った。液位は、NbTi 線材からなる市販の液体へリウム用 液面計を用いて測定した。試験結果の一例を Fig.1 に示す。 ただし、ガス中での差分電圧が 0 になるよう補正した。差分電 圧は、液位と1対1で対応し、液面上昇時と下降時で再現性 が良好であった。

4. 液体水素を用いた本実験

液体水素を用いた試作液面計の動作模擬試験を実施した。試験は、液体水素充填による液位上昇時と、水素ガス加 圧排出による液面下降時に行った。ガス中の両線の差分電 圧が0となるよう補正し、得られた差分電圧から液位を算出した。350 mA 通電した際の液面上昇時と下降時の液位の時間 経過をFig.2に示す。Fig.2から、試作液面計は液位を連続的 に計測できていると考えられる。充填終了時に差分電圧が低 下しているが、これは、圧力の低下により液面が下降したため である。

参考文献

- T. Inoue, et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.74
- K. Kajikawa, et al.: Abstracts of CSJ Conference, Vol. 83 (2010) p.75
- M. Kanazawa, et al.: Abstracts of CSJ Conference, Vol. 82 (2010) p.120

Fig.1 An example of experimental results in LHe

Fig.2 An example of experimental results in LH₂

井上 拓郎,渡辺 和樹,柁川 一弘(九州大学);金澤 昌哉,山田 豊(東海大学);

2 テスラ級 MgB₂ 超伝導バルク磁石の開発 Development of 2 Tesla class MgB, superconducting bulk magnets

Development of 2 resid class mgD₂ superconducting built magnets

山本 明保(東大); 石原 篤, 富田 優(鉄道総研); 下山 淳一, 岸尾 光二 (東大)

<u>YAMAMOTO Akiyasu</u> (University of Tokyo); ISHIHARA Atsushi, TOMITA Masaru (Railway Technical Research Institute); SHIMOYAMA Jun-ichi, KISHIO Kohji (University of Tokyo)

IMOYAMA Jun-Icni, KISHIO Konji (University of Tokyo)

E-mail: yamamoto@appchem.t.u-tokyo.ac.jp

1. はじめに

冷凍機冷却による 15-30 K で応用可能な超伝導バルク磁石として MgB_2 バルク体を検討した。金属系超伝導体としては最高の転移温度 T_c (40 K)を持つ MgB_2 は、超伝導コヒーレンス長が長く電磁的異方性が低いことから、無配向の多結晶体においても 10⁵ A/cm²以上の比較的高い臨界電流密度 J_c を持つ巨視的超伝導電流が得られる[1]。この結晶粒間における弱結合の不在は、多結晶試料全体にわたっての均一な超伝導電流分布を可能とする[2]。また、 MgB_2 バルク体はマグネシウムとホウ素の混合粉末に熱処理を施す *in-situ* 法などにより比較的容易に、かつ低コストで作製可能である。

MgB₂ は線材化研究が積極的に行われているが、弱結合 フリーに由来する特徴は RE 系溶融凝固バルクで研究が進ん でいる超伝導バルク磁石としても最適である。すなわち、40 K 以下で動作可能な強力磁石として、輸送・医療等への応用が 期待でき、とくに、高い磁場均質性が求められる MRI, NMR な どへの応用に適すると考えられる。

最近我々はクラックの無い均一な組織を持つ MgB₂バルク 体を作製する技術を開発し、比較的大型のバルク体の作製 が可能となった。本研究では、MgとBの混合粉末の圧粉成型 体を熱処理することにより円盤型 MgB₂バルク体を作製し、そ の捕捉磁場特性を評価した。

2. 実験方法

Mg (99.6%、325mesh) とB (99%、300mesh)の混合粉末 を直径 20 mmø、厚さ5,10 mmの円盤状に成型し、アルゴン 雰囲気下で850℃,3hの熱処理を行うことでMgB₂バルク体を 得た。一部のバルク体については、機械的強度を高めるため に MgB₂バルク体/金属(SUS)複合体とした。得られた MgB₂バ ルク体試料、および1対の MgB₂バルク体を厚さ2 mmのスペ ーサーを介して組み合わせたバルクペア試料をへリウム冷凍 機で冷却し、超伝導マグネットを用いて磁場下冷却(FC)条 件により6 T の磁場下で着磁を行った。バルク体の捕捉磁場 特性に関してはバルク体表面、またはスペーサー内に配置し たホール素子を用いて測定し、捕捉磁場の温度依存性、時 間依存性などを評価した。試料温度は試料を設置した冷凍 機コールドステージの温度とした。また、バルク体から切り出し た試料片に対して、SQUID 磁束計により磁化測定を行った。

3. 結果と考察

作製した MgB₂ バルク体試料の表面を光学顕微鏡で観察 したところ、マクロスケールのクラック等はみられず均一な組織 を有することが分かった。バルク体から切り出した試料の磁化 特性を調べたところ、T_cは約 39 K であり、J_cは 20 K において 2×10⁵ A/cm²以上であった。

直径 20 mm¢, 厚さ5 mmのバルク体試料を着磁後、バル ク体表面中心の位置において測定した捕捉磁場の温度依存 性を Fig. 1 に示す。15 K において 1.3 T が得られ、20 K 程度 まで 1 T 以上の捕捉磁場が得られた。次に、直径 20 mm¢, 厚さ10 mmのバルク体試料 2 ケを組み合わせたバルクペア試

Fig. 1. Trapped field as a function of cold-stage temperature for a MgB₂ bulk disk with 20 mm $\phi \times 5$ mm^t and a disk pair with 20 mm $\phi \times 20$ mm^t. The samples were field-cooled (FC) under 6 T to 13 K. Trapped field of the samples was masured after removal of the external field by a hall-sensor which locates on the center of the bulk surface (for single disk) or at the center of gap between the disks (for disk pair) as shown in the schematic images.

料を着磁後、バルク体間の中心の位置において捕捉磁場を 測定した。得られた捕捉磁場は15 Kにおいて2.8 Tであり、 30 K程度まで1 T以上の磁場を捕捉した。単一の直径20 m mø,厚さ10 mmのバルク体試料の表面中心における捕捉磁 場は15 Kで1.5 Tであったことから、バルクペア試料では単 一のバルク体試料の2 倍に近い捕捉磁場が得られていること が分かる。なお、測定後の試料にクラック発生等のバルク破 壊は認められず、測定を繰り返した際に特性の劣化はみられ なかった。

4. 結論

円盤状の MgB₂ バルク体を作製し、超伝導バルク磁石としての可能性を検討した。直径20 mm Ø MgB₂ バルク体において15 K で2.8 T の捕捉磁場が得られた。バルク体の臨界電流密度、微細組織の改善により捕捉磁場のさらなる向上は可能であり、MgB₂ バルク体は数テスラ級の強力超伝導バルク磁石候補として有望であると考えている。

参考文献

[1] D. C. Larbalestier et al., Nature 410, 186 (2001).

[2] 山本明保 ほか,応用物理 79,48 (2010).

MgB₂線材のコア組織に及ぼす HIP 処理の影響

Effects of HIP treatment on the core structures of MgB₂ wires and tapes

<u>金澤 昌哉</u>,大野 高弘,山田 豊,太刀川 恭治(東海大);山下 史祥(古河テクノマテリアル); 熊倉 浩明,松本 明善(NIMS)

KANAZAWA Masaya, OHNO Takahiro, YAMADA Yutaka, TACHIKAWA Kyoji (Tokai University); YAMASHITA Fumiyoshi (Furukawa Techno Material); KUMAKURA Hiroaki, MATSUMOTO Akiyoshi (NIMS) E-mail :qyyqr273@ybb.ne.jp

1. はじめに

MgB₂線材は高い臨界電流密度(J_c)が求められており、高 密度な MgB₂ コアを得る方法として一軸の加圧であるホットプ レス処理の影響についてこれまで報告してきたが、本報では 等方加圧である HIP 処理を施した時の MgB₂線材のコア組織 に与える影響について報告する。使用した線材は外部拡散法、 In-situ PIT 法により作製した丸線及びテープ線材である。

2. 実験方法

Fig. 1 に MgB₂線材作製方法を示す。丸線材は本研究室で 従来行われてきた 2 種類の方法で作製した。In-situ PIT 法は 外径/内径:1.0/0.6 mm φ ステンレス鋼(SS)管にMgH₂粉末、ア モルファス B 粉末の混合粉末を充填した。外部拡散法は外径 /内径:12/6 mm φ の純鉄管に、外径/内径:6.0/4.0 mm φ の Mg 金属管を挿入後、5 mol%の SiC 粉末を添加したアモルファス B 粉末を充填した。両試料とも冷間で線引き加工を行い、PIT 法では直径 0.1~0.2 mm φ 、外部拡散法では直径 1.0~0.8 mm φ の丸線材を作製した。テープ線材は外径/内径:8.0/4.5 mm φ の炭素鋼管の中に MgH₂粉末、アモルファス B 粉末、5 mass%の SiC 粉末の混合粉末を充填した。その後、溝ロール 加工、圧延加工により幅 4 mm、厚さ 0.5 mm のテープ線材を 作製した。630℃×5 h、Ar 雰囲気中で熱処理を行い、一部の 試料において100 MPaのホットプレス処理を行った。一方 HIP 熱処理も同様に 630℃×5 h、100 MPa、Ar 雰囲気で行った。

3. 実験結果および考察

Fig.2に、炭素鋼管外径/内径:8.0/4.5 mmφから作製したテ ープ線材の横断面光学顕微鏡写真を示す。(a)と(b)の写真 を比較すると、ホットプレス処理を行うことでテープ線材が押し つぶされて横幅が広がるとともに MgB2コアがより密になった。 また、(c)と(d)の写真を比べると、HIP 処理で等方的に加圧さ れたことにより試料は押しつぶされ MgB2コアは高密度になっ たが、横幅はほとんど変わらなかった。

Fig. 3に、Mg金属管外径/内径:6.0/4.0 mmφより出発し、線 材直径 0.8 mmφ 試料の光学顕微鏡写真を示す。熱処理後の 写真(a)を見ると、生成した MgB2コアの周りには Mgの拡散に よって空孔が生じていることがわかる。一方 HIP 処理後の写真 (b)を見ると、等方加圧により空孔を押しつぶすことができ、線 材直径もやや小さくなった。このような MgB2 コア周囲の空孔 の消滅は SEM 観察によっても認められ、スムーズな通電とMg と B との拡散反応にも寄与するものと考えられる。

Fig. 1 Preparation procedure of MgB₂ wires and tapes.

Fig. 2 Macrostructures of cross sections in MgB₂ tapes.

Fig. 3 Macrostructures of cross sections in MgB_2 wires of 0.8 mm φ in diameter. (a) heat-treated (b) HIP treated.

ex-situ法 MgB₂バルクにおける臨界電流特性の原料粉末依存性

Relationship between heating conditions of starting powders and critical current properties of *ex-situ* MgB₂ bulks

田中 裕也, 山本 明保, 荻野 拓, 下山 淳一, 岸尾 光二 (東大)

TANAKA Hiroya, YAMAMOTO Akiyasu, OGINO Hiraku, SHIMOYAMA Jun-ichi, KISHIO Kohji (Univ. of Tokyo) E-mail : tt106670@mail.ecc.u-tokyo.ac.jp

1. はじめに

金属系超伝導体で最高の T_c (~40 K)を持つMgB₂材料は、 液体へリウムフリーの15-20 K で運転可能な医療用 MRI など の機器への応用が期待されている。しかし、現状のMgB₂線材 は NbTi 線材、Nb₃Sn 線材と比較して J_c が低く、その原因とし て多結晶体における低いコネクティビティが指摘されている。

MgB₂多結晶材料の作製方法には、*in-situ* 法と *ex-situ* 法 がある。Mg と B の混合原料を熱処理する *in-situ* 法からは、 粒間の結合が強く、比較的高い *J*。が容易に得られるが、原理 的に低い焼結密度(約50%)がコネクティビティ抑制の原因で あることが明らかになっている[1]。一方、既製の MgB₂ を反応 容器に充填後、加工・熱処理を施す *ex-situ* 法は、高密度、 組織が均一などのメリットがあるが、*in-situ* 法よりも粒間結合 が弱いことが問題であった。

我々は、ex-situ 法 MgB_2 多結晶体の結晶粒間の結合の強 化を目的とした研究を行っており、高温で長時間熱処理を施 すことで常圧下においても MgB_2 の自発的な焼結がみられ、 粒間結合と J_c が向上することを報告している[2]。本研究では ex-situ 法 MgB_2 多結晶体の結晶粒間の結合をさらに改善す ることを目的とし、異なる熱処理条件で合成した種々の自製 MgB_2 粉末を原料として ex-situ 法 MgB_2 バルクを作製し、それ らの微細組織、超伝導特性とコネクティビティの評価から ex-situ 法 MgB_2 バルクの焼結機構と臨界電流特性の関係を 考察した。

2. 実験方法

Mg (99.6%、325mesh) と B (99%、300mesh)の混合粉末 を Nb 管に封入し、石英管に真空封入後、600℃, 60 h または 900℃, 2 h の熱処理を施し、粉砕することにより自製 MgB₂粉 末を得た。自製 MgB₂粉末を SUS316 管に充填し、一軸プレス によって両端を封じるとともにテープ状に成型後、石英管に 真空封入し、900℃において 0~240 h までの様々な時間熱 処理を行った。SQUID 磁束計による磁化測定から超伝導特 性を、X 線回折 (XRD)測定により構成相を、交流四端子法 により常伝導状態の抵抗率とコネクティビティを評価し、 FE-SEM により微細組織観察を行った。

3. 結果と考察

600℃, 60 h 熱処理 MgB₂粉末を用いて作製した *ex-situ* 法 MgB₂ バルク試料の充填率およびコネクティビティの熱処理 時間依存性を Fig. 1 に示す。充填率・コネクティビティは熱処 理時間の増加とともに向上する傾向がみられた。これは 900℃での長時間の熱処理により MgB₂ の焼結反応が進行し たことを示唆する。充填率は 48 h の熱処理で 77% へと改善し コネクティビティも 26%に達した。これらは、常圧下で作製した 無配向の *ex-situ* 法バルクとしては非常に高い値である。20 K における J_c の磁場依存性を Fig. 2 に示す。熱処理時間の増 加とともに J_c は大きく改善し、低磁場下において 3×10⁵ A/cm²以上の J_c が 24~96 h 熱処理試料で得られた。とくに、 48 h 熱処理試料では 4.1×10⁵ A/cm²と非常に高い。

異なる原料粉末を用いて作製した ex-situ 法 MgB₂バルク 試料における、J_c(20 K,自己磁場下)の熱処理時間依存性 を Fig. 3 に示す。600℃熱処理粉末を用いて作製した試料は、 900℃熱処理粉末を用いて作製した試料と比較して高い J_cを 示した。この理由として、低温生成により作製した 600℃熱処 理 MgB₂粉末においては、細かい粒径や高い H_{c2}に由来して 磁束ピンニング力が強いことが挙げられる。さらに講演では、 微細組織の違い臨界電流特性に及ぼす影響についても議論 する。

- A. Yamamoto, J. Shimoyama, K. Kishio and T. Matsushita, Supercond. Sci. Technol. 20 (2007) 658–666.
- 2. 田中他, 2010 年度秋季低温工学·超電導学会 1D-p01.

Fig. 1. Sintering time dependence of packing factor and connectivity for the *ex-situ* MgB₂ bulks using powder prepared at 600°C.

Fig. 2. Field dependence of J_c at 20 K for the ex-situ MgB₂ bulks heat-treated at 900°C for 0, 6, 24, 48, 96 and 240 hours.

Fig. 3. Sintering time dependence of J_c (20 K, self-field) for the *ex-situ* MgB₂ bulks heated at 900°C using MgB₂ powders prepared at 600°C and 900°C.

ピレン(C₁₆H₁₀)ガスによる MgB₂ 材料の臨界電流密度の改善 In-field J_c improvement by oxygen-free pyrene gas diffusion into highly dense MgB₂ superconductor

<u>前田</u>穂,中山 住威,久保田 洋二(日大);Jung Ho Kim, Shi Xue Dou(Univ. Wollongong); <u>MAEDA Minoru</u>, NAKAYAMA Yoshitake, KUBOTA Yoji(Nihon Univ.);Jung Ho Kim, Shi Xue Dou(Univ. Wollongong); E-mail: maeda@phys.cst.nihon-u.ac.jp

1. はじめに

MgB₂材料は、2001年に発見されたその超伝導性により、 次世代の超伝導装置、例えば、液体ヘリウムを必要としない 次世代 MRI 装置として、期待されている。しかしながら、その ためには、MgB₂の臨界電流密度(*J*₀)のさらなる増大を必要と している。この課題を解決するために、MgB₂粒間のつながり や MgB₂材料への炭素の組み込み方法に対処しなければな らない。これらは、具体的に、①隣り合う MgB₂粒どうしのカッ プリング、②電流流路に対する有効な断面積の改善、③不純 物相の制御、④MgB₂結晶格子または結晶粒内への炭素の 一様な組み込み方法が挙げられる。

MgB₂結晶格子または粒内への炭素の一様な組み込み方 法は、特に、高磁場下での超伝導応用のために、もっとも改 善されなくてはならない課題の一つである。炭素置換による格 子の乱れは、上部臨界磁場を増大させるが、未反応の残留 炭素の塊が、電流流路に対する有効な断面積を縮小させ、 自己磁場下または低磁場下での臨界電流密度を減少させる。 このため、今まで、多くのグループが、MgB₂材料への炭素の 組み込み効率を改善せるために、固相または化学溶液手段 による液相処理での混合方法に焦点を当ててきた。しかしな がら、我々の最近の研究では、リンゴ酸(C₄H₆O₅)を使用した 化学溶液手段による炭素添加でさえ、MgB₂結晶粒界に、数 百ナノサイズから数マイクロサイズ以上の未反応炭素の塊が、 多数存在することが確認されている。本研究で、我々は、気 相拡散法による効率的な炭素添加方法を提案し、その効果 を検証した。[1]

2. 実験方法

気相拡散法による炭素添加材料として、ピレン(C16H10)を 使用した。ピレンは、404度の沸点を示し、芳香族の炭化水素 である。本研究では、ピレンガスによる2種類の炭素添加方法 を試した。まず、1 つ目の方法(Study 1)は、アルゴン中で、硼 素粉末とピレン粉末を Ta 管内に、溶接封入した。その Ta 管 は、石英管に真空封入され、600度1時間で、熱処理された。 この熱処理過程により、ピレンまたは炭素を、全ての硼素粉末 の表面に、均等的に堆積させるまたは反応させることが期待 できる。このピレンガス中で熱処理された硼素粉末を使用して、 Mg 拡散法により、MgB2 バルクを作製した。もう一つの方法 (Study 2)は、アルゴン中で、マグネシウム粉末、ピレン粉末、 圧粉成型した硼素のバルクを、Ta 管内に、溶接封入した。そ のTa管を石英管内に真空封入し、熱処理を加えて、MgB2バ ルクを作製した。2 つの方法の概略図を、Figure 1 に示す。ま た、比較のために、ピレンガスを使用せずに、MgB2 バルクを 作製した。全ての MgB2 試料は、1100 度 4 分の熱処理した後 に、660~710度24~48時間で熱処理が加えられた。

3. 結果と考察

シンクロトロン放射粉末回折パターンから、全ての試料が MgB2を主相にもつ単相に近い試料であることがわかった。少 量の不純物として MgO が観測された。これは、ピレンガスを 使用しても、MgB2 が生成されるということを示唆している。ま た、作製方法にかかわらず、ピレンガスを使用して作製された 試料は、a 軸の格子定数が収縮していることがわかった。その 試料の格子歪みは、ピレンガスを使用せずに作製した試料に 比べ、増大していることがわかった。透過型電子顕微鏡 (TEM)から、Study 1で作製された試料に、数マイクロサイズ以 上のボイドは、観測されなかった。(Figure 1(a)) 走査型透過 電子顕微鏡(STEM)と電子エネルギー損失分光法(EELS)か ら、MgB2結晶粒内または粒界に、30nmの大きさのMgOが観 測された。(Figure 1(b), (c), (d), (e)) しかしながら、結晶粒界 に、未反応炭素の塊は検出されなかった。これは、気相拡散 法による炭素添加方法が、化学溶液手段による炭素添加方 法よりも、効率的に炭素をMgB2粒内に組み込むことができる 可能性を示唆している。当日は、超伝導転移温度やJcを含め て、より詳細に報告する。

Figure 1 Schematic of Mg diffusion method in combination with pyrene gas treatment used in study 1 and study 2. [1]

Figure 2 Microstructure of high-density MgB_2 bulk prepared from B powder sintered in oxygen-free C containing gas: (a) bright field TEM image, (b) annular dark field STEM image and MgO nanoparticles are shown by circles, (c) high angle annular dark field STEM image, (d) Boron *K* edge map, and (e) Oxygen *K* edge map. [1].

参考文献

 M. Maeda et al.: Journal of applied physics, Vol. 189 (2011) 023904

AI テープ上に作製した MgB2 薄膜の微細組織構造 Microstructure in MgB2 thin film prepared on AI tapes

<u>嶋田 雄介</u>, 久保田 雄貴, 波多 聰, 池田 賢一, 中島 英治(九州大学); 土井 俊哉(京都大学); 吉原 和樹(鹿児島大学) 松本 明善, 北口 仁(物質・材料研究機構)

SHIMADA Yusuke, KUBOTA Yuki, HATA Satoshi, IKEDA Ken-ichi, NAKASHIMA Hideharu (Kyushu University);

DOI Toshiya (Kyoto University); YOSHIWARA Kazuki (Kagoshima University);

MATSUMOTO Akiyoshi, KITAGUCHI Hitoshi (NIMS)

E-mail: nk-y-shimada@mms.kyushu-u.ac.jp

1. はじめに

最近、電子ビーム蒸着法により Al テープ上に作製された MgB₂薄膜において、従来の Si 基板上に生成したものと比べ て特に高磁場領域で臨界電流密度(*J*₂)特性が大きく改善して おり、新たな線材製造方法として期待されている[1]。本研究 では、Al テープ上に作製した MgB₂薄膜の微細組織観察を 行い、過去に我々のグループが報告した Si 基板上 MgB₂薄 膜との比較を行った。

2. 薄膜作製および実験方法

220°C に加熱した Al テープ基板上に、電子ビーム蒸着装置を用いて MgB_2 薄膜を作製した。220°C で作製した薄膜は、他の温度(200~280 °C) で作製した MgB_2 /Al 薄膜のなかで最も高い T_c を示したものである[1]。原料である $Mg \ge B$ の蒸着速度をそれぞれ 1.4nm/sec \ge 0.7nm/sec \ge することで膜組成の制御を行った。

組織観察は透過電子顕微鏡(TEM)により行った。また、 組成分析は走査透過電子顕微鏡(STEM)を用いたエネルギ 一分散分光法(EDS)により行った。MgB2薄膜表面に C およ び Pt 蒸着を行った後、集束イオンビーム装置(FIB)を用いて 平面および断面試料を作製した。

3. 結果および考察

Fig.1 に、薄膜断面方向から見た電子回折図形(a)および暗 視野 TEM 像(b)を示す。電子回折図形において、hkl = 002_{MgB2}の回折リングが膜成長(上下)方向にのみ見られる。こ れは、これまでの MgB2 薄膜と同様に MgB2 結晶が膜厚方向 にc軸配向していることを表している。また、MgB,以外の回折 波は見られないことから、MgB2 膜内に MgO などの不純物結 晶相が存在していないことが考えられる。暗視野 TEM 像では、 MgB2 膜全体に明るいコントラストの領域が見られ、高い c 軸 配向度を有するMgB2柱状結晶が形成していることがわかる。 膜厚は、観察したすべての領域において約 500 nm であり、 本薄膜は MgB2が Al テープ基板上に均一に成膜されている ことが示唆される。また、図中白矢印で示すように MgB2 膜と Al テープの間にコントラストの異なる領域が存在する。この領 域について EDS 組成分析を行ったところ、酸素が濃化してい ることがわかった。これは、MgB2蒸着前のAlテープ表面が酸 化したことで形成した領域であることが考えられる。また、組成 分析の結果、Al 原子が MgB, 膜内に拡散している様子は認 められなかった。

Fig.2 に、薄膜平面方向から見たAlテープ上MgB2薄膜(a) と Si 基板上 MgB2薄膜(b)の TEM 観察結果を示す。それぞ れの暗視野 TEM 像では大きな違いは見られず、数十 nm オ ーダーにおいては大きな組織の違いはないものと思われる。 Alテープ上 MgB2薄膜の電子回折図形(a)に比べて、Si 基板 上 MgB2 薄膜の電子回折図形(b)では、回折リングが途切れ ており、a 軸についてもわずかに配向していることが考えられ る。また、(a)には見られないスポット状の回折強度分布(図中 白矢印)が見られる。これらの回折図形の特徴は、Si 基板上 MgB2薄膜の結晶粒径の方が大きい可能性を示している。

Fig. 1 Electron diffraction pattern (a) and cross-section DF-TEM image ($g = 002_{MgB2}$) of MgB₂/Al thin film (b). An arrow in (b) indicate oxgen-rich layer.

Fig. 2 Electron diffraction patterns and plan-view DF-TEM images ($g = 110_{MgB2}$) of MgB₂/Al thin film (a) and MgB₂/Si thin film (b).

以上の結果から、Alテープ上のMgB2薄膜の微細組織は、 30 nm 程度の厚みを持つ酸素濃化領域の上に c 軸配向した MgB2 柱状結晶粒が形成したものであることがわかった。また、 MgB2 膜内に粗大な不純物は存在しないことから、MgB2結晶 の結合度が高い可能性が示唆された。また、Si 基板上 MgB2 と比較したところ、結晶粒径が小さい可能性が示唆された。こ れらが高磁場における高 J_cの要因であると考えられた。

本研究の一部は、文部科学省九州地区ナノテクノロジー 拠点ネットワーク超顕微解析支援において実施されました。

参考文献

1. 吉原 和樹ら: Abstracts of CSJ Conference, Vol. 83 (2010) p.209

拡散プロセスを用いた FeSe 超伝導線材の作製

Fabrication of FeSe superconducting wires by diffusion process

<u>尾崎 壽紀</u>, 出村 郷志, 出口 啓太(物質・材料研究機構);水口 佳一(首都大);川崎 保名, 山口 尚秀, 熊倉 浩明, 高野 義彦(物質・材料研究機構) <u>OZAKI Toshinori</u>, DEMURA Satoshi, DEGUCHI Keita (NIMS); MIZUGUCHI Yoshikazu (Tokyo Metro. Univ.); KAWASAKI Yasuna, YAMAGUCHI Takahide, KUMAKURA Hiroaki, TAKANO Yoshihiko (NIMS) E-mail: OZAKI.Toshinori@nims.go.jp

1. はじめに

FeSe などの 11 型鉄系超伝導体は、高い上部臨界磁場 (H_{in})を示しながら、LaFeAs(O,F)などの他の鉄ヒ素化合物と比 較して毒性が低く、結晶構造が単純であるため応用への可能 性が期待されている。我々は 11 型鉄系超伝導体の線材作製 に取り組んできた[1-3]。超伝導線材のシース材は、内部の超 伝導体と反応しないことが求められるが、金属管と超伝導体 の良好な結合を得るために、意図的に金属管を内部に形成 する超伝導体の材料として利用することを考えた。今回、鉄シ ースに Se 粉末のみを詰めて加工、熱処理するという非常に簡 便な方法(鉄拡散 Powder-in-tube(PIT)法)を用いることで、高 い超伝導特性をもつ FeSe 線材を作製することに成功した。こ の方法は多芯線の作製にも非常に有効であるため、応用面 においても期待できる。

2. 実験方法

FeSe 超伝導線材は鉄シースを用いた鉄拡散 PIT 法で作 製した。Se 粉末を充填した鉄シースを、まず溝ロール圧延で、 約 2.5 mm 角のロッドに加工し、ついでダイス線引きにより約 1.1 mm 径に線材加工した。更に 1.1 mm 径の線材を7本鉄シ ースに詰めて 2.0 mm 径の線材に加工することで多芯線を作 製した。加工後、約5 cmの短尺試料を切り出し、1 atm アルゴ ンガス雰囲気中で石英ガラスに封入した後、800°C で 2 時間、 熱処理を行った。Fig. 1 に 800°C で 2 時間熱処理を行った FeSe 線材の断面図を示す[4]。

評価方法は、結晶構造を X 線回折法(XRD)で、また Transport I_c は液体ヘリウム中において四端子抵抗法で測定 した。 I_c を決定する電界基準は 1 μ V/cm とした。微細組織観 察は走査型電子顕微鏡(SEM: Scanning electron microscope) を用いて行った。

3. 実験結果

Fig. 2 に鉄拡散 PIT 法で作製した FeSe 超伝導線材の各磁場における電気抵抗率の温度依存性を示す[4]。0 Tにおける $\rho(T)$ 曲線は 12.3 K で低下し始め、10.5 K でゼロ抵抗を示した。 $T_c^{zero} = 10.5$ K は FeSe 多結晶体における値より約 2 K 高い。 XRD 測定の結果から格子定数を算出すると、FeSe 線材の c 軸長は多結晶体の値より短いことがわかった。このことから FeSe 線材における T_c^{zero} の向上は c 軸長の収縮と関係がある と考えられる。また、 $\rho(T)$ 曲線は磁場の増加に伴い低温側にシフトしているが、遷移幅(ΔT_c)はほとんど変化していない。これは異方性の小さな金属系超伝導体の振る舞いと類似している。

Fig. 3 に FeSe 線材の単芯線ならびに多芯線の磁場中 J_c 特性を示す[4]。比較として FeSe_{1-x}Te_x線材の J_c の磁場依存性 (4.2 K)を示す。単芯線の自己磁場 $J_c(J_c^{s.f})$ は 4.2 K で 350 A/cm²、更に多芯線においては 1027 A/cm²を示した。多芯線 の値は、FeSe_{1-x}Te_x線材の値より約 100 倍の高い値である。ま た、FeSe 線材は磁場中における J_c の低下も低いことから、高 磁場応用の材料として期待される。これらの結果から、鉄拡散 PIT 法は FeSe 超伝導線材、特に多芯線の作製に非常に有効 であると考えられる。

Fig.1 Cross section view of (a) mono and (b) seven-core wires of FeSe after heat treatment.

Fig.2 Temperature dependence of resistivity for FeSe wires fabricated by the *in-situ* Fe-diffusion PIT method under magnetic fields up to 7 T.

Fig.3 Magnetic field dependence of transport J_c at 4.2 K for FeSe wires fabricated by the *in-situ* Fe-diffusion PIT method.

参考文献

- 1. Y. Mizuguchi, et al.: Appl. Phys. Express 2 (2009) 083004.
- 2. T. Ozaki, et al: IEEE Trans. Appl. Supercond.(in press)
- 3. T. Ozaki, et al: Physica C (in press)
- 4. T. Ozaki, et al: arXiv: 1103.3602

Ex-situ PIT 法で作製した Ag 被覆(Ba,K)Fe₂As₂+Ag 線材の輸送臨界電流密度 Transport critical current densities of Ag-sheathed (Ba,K)Fe₂As₂+Ag wires prepared by an ex-situ PIT process

<u>戸叶</u>一正,松本 明善,熊倉浩明 (NIMS) E-mail: TOGANO.Kazumasa@nims.go.jp

1. はじめに

新たに発見された鉄系超伝導体は高い臨界温度 T_c と極めて高い上部臨界磁界 H_{c2} を有するため、液体ヘリウムあるい は冷凍機冷却による強磁場発生用の線材として応用が期待 されている。そのため、11 系の Fe(Se,Te) [1]、122 系の (Sr,K)Fe₂As₂ [2]、1111 系の SmFeAsOF [3]などを対象にして、 Powder-in-tube (PIT)による線材の作製が試みられてきた。し かし測定される輸送臨界電流密度 J_c は非常に低いレベルに とどまり、Pb 添加した(Sr,K)Fe₂As₂の 3750 A/cm²(自己磁場中、 4.2 K)が現在までに報告されている最も高い値である[2]。

本研究ではAg添加した122系の(Ba,K)Fe₂As₂を対象にして銀被覆 PIT 線材を試作し、~ 10^4 A/cm²(自己磁場中、4.2 K)の比較的高い輸送 J_c を測定したので報告する。

2. 実験方法

前駆体は溶融反応法で作製した。すなわち、Ba、K、FeAs 合金、Ag のチップを BN るつぼに挿入後、SUS 管に封入して 高温(~1050℃)の熱処理を行った。Ag は結晶粒間の接合を改 善する目的で添加した。得られたバルク体を粉末にし、銀管 に封入して溝ロール、スウェージで線状(2 mm 径)に加工し、 さらに単尺試料を SUS 管に封入して焼結のための熱処理を 行った。熱処理温度は 850℃である。

3. 実験結果

Fig. 1 は熱処理後の線材の断面組織を示す。銀被覆とコ ア部との間に特に反応した形跡は見られない。高倍率の観察 ではコア部の組織は結晶粒径が 10-50 µm の(Ba,K)Fe₂As₂相 をマトリックスとして、その中に Ag が分散した組織になってい る。Ag は 122 相の粒界に沿って析出し、また粒界に沿って空 隙の存在が多く見られた。

Fig. 2 は 18 T のマグネット中で測定した 4.2K におけるI-V 特性の一例を示す。遷移はシャープで Ag が電気的にも優れ た被覆材としての役目を果たしていることが分かる。この I-V 特性から 1 μ V/cm の基準で臨界電流 I_c を決め、さらにコア部 の 断面積で除して輸送臨界電流密度 J_c を計算した。Fig. 3 は 4.2K における J_c -H曲線を示す。850°CX30 h の熱処理を 施したものが最も優れた特性を示した。 J_c の最高値は自己磁 場中で~1.0X10⁵ A/cm² (I_c = 60.7 A)、10 T の磁界中で~ 1.1X10³ A/cm² (I_c = 6.6 A)である。これらの値は PIT 線材で今 までに報告されたなかでは最も高い。

4. 謝辞

本研究は、科学技術振興機構の戦略的創造研究推進事業(JST-TRIP)および日本学術振興会の最先端研究開発支援(FIRST)プログラムにより助成を受けたものである。

参考文献

Y. Mizuguchi et al.: Appl. Phys. Express 2(2009) 083004.
Y.P. Qi et al.: Supercond. Sci. Technol. 23(2010) 055009.
L. Wang et al.: Supercond. Sci. Technol.23(2010) 075005.

Fig. 1 Transverse cross section of the wire after the heat treatment.

Fig. 3 Transport J_c as a function of applied magnetic field of the wires. The measurement was carried out in liquid helium using 12 T and 18 T superconducting magnets.

Fe122 単結晶の臨界電流特性に対する置換サイトの影響

Substitution site dependence of critical current characteristics of Ba122

筑本 知子, 田辺 圭一(ISTEC); 平田渉, 宮坂茂樹, 田島節子(阪大理)

CHIKUMOTO Noriko, TANABE Keiichi (ISTEC); Wataru Hirata, Shigeki Miyasaka, Setsuko Tajima (Osaka Univ.)

E-mail: chiku@istec.or.jp

1. はじめに

鉄ニクタイド系高温超電導体のうち BaFe₂As₂ (Fe122)はFe サイトの Co 置換、Ba サイトの K 置換、あるいは As サイトの P 置換により超電導特性が現れ、T_c 値はそれぞれの置換量に 依存することが知られている。今までの銅酸化物超電導体の 研究から、元素置換はキャリアをドープする一方で、電子の散 乱中心となり超電導特性の低下をもたらす場合があることが 知られている。

そこで、本研究では、Co置換及びP置換したFe122単結 晶について、臨界電流特性評価を行い、置換サイトによる影響の違いについて検討を行なった。前回までは、Co置換の 場合には Co置換量によらず、J_cの磁場依存性にいわゆるピ ーク効果が現れるのに対し、P置換では現れないことを報告し た。今回はもう少し詳細について検討を行ったので、その結 果について報告する。

2. 実験方法

測定には Ba(Fe_{1-x}Co_x)₂As₂ (x=0.06, 0.1, 0.15)及び BaFe₂(As_{0.65}P_{0.35})₂ の4種類の組成(仕込み)の単結晶を用い た。Co 置換試料について、EPMA 測定から求めた値はそれ ぞれ x=0.044, 0.075, 0.116 であり、仕込み組成よりも Co が減 少する傾向にあった。また、P 置換試料については、分析組 成と仕込み組成が一致した。また T_c (オンセット)はそれぞれ 約 12.5K(x=0.044)、23.3K(x=0.075)、12.2K(x=0.116)、29.2K (Pドープ)であった。Fig.1 に Co 置換試料について、x と T_c の関係を電子状態相図にプロットするが、本研究で用いた試 料はそれぞれ underdope, optimum, overdope 状態に対応す る。

磁化測定は SQUID 磁束計 (Quantum Design 社)を用いて、 すべて結晶の c 軸に平行に磁場を印加して行い、磁気ヒステ リシスの大きさから、拡張 Bean モデル¹を用いて J_c値を算出し た。

3. 実験結果

Fig. 2 に Co 置換試料とP 置換試料の J_c -B曲線の温度依存性を示す。自己磁場での J_c 値はほとんど同じであるが、Co 置換試料ではピーク効果の出現により高磁場での J_c 値が高くなっている。

Fig. 3 に Co 置換試料について規格化したピン力密度(F_p , $/F_{p, max}$)を b = B/B_{irr} に対してプロットした結果を示すが、 x によらず非常によくスケーリングされていることが分 かる。また、x が小さくなる程 F_p / $F_{p, max}$ が最大値となる b 値 (b_p)が小さくなる傾向にある。ここで、optimum~ overdope 領域である x=0.075 及び 0.116 の b_p 値は 0.4~ 0.5 と Y 系等で報告されているものとほぼ同じ値である²。 このことは、本系のピーク効果が δT_c ピニング機構によ ることを示唆しており、Co 置換領域がピニングに効いて いると今のところ考えている。一方、underdope 試料 (x=0.044)では b_p ~0.2 であり界面ピンの存在を示唆す る。実際、underdope 領域では斜方晶と正方晶が混在する structural domain が存在することが報告されており³、 それがピン止め中心として効いているものと考えられる。

ー方、P 置換試料ではスケーリングは成り立たず、Co 置換試料とは異なるふるまいを示した。詳細については、 当日議論を行う。

Fig.1 Phase diagram of $Ba(Fe_{1-x}Co_x)_2As_2$. Closed circles show the T_c values of three single crystals used in the present study.

Fig.2 Field dependence of J_c for Ba(Fe_{1-x}Co_x)₂As₂ (x=0.075) (left panel) and BaFe₂(As_{0.65}P_{0.35})₂ single crystals.

Fig.3 Plots of scaled volume pinning forces $F_p/F_{p,max}$ versus reduced field b=B_a/B_{irr} for Ba(Fe_{1-x}Co_x)₂As₂.

4. 謝辞

本研究は日本学術振興会の最先端研究開発支援プログラム により助成を受けて実施したものである。

参考文献

- 1. E.M. Gyorgy, et al., Appl. Phys. Lett. 55 (1989) 283.
- 2. M.R. Koblischka, et al., Phys. Rev. B 58 (1998) 2863.
- 3. R. Prozorov et al., Phys. Rev. B 80, 174517(2009)

— 48 —

急熱急冷変態法 Nb₃Al 線材におけるピンニングセンター Possible pinning center of transformation-processed Nb₃Al conductors

<u>伴野信哉</u>,竹内孝夫(物材機構);土屋清澄(KEK);中川和彦,櫻井義博(日立電線) <u>BANNO N</u>, TAKEUCHI T (NIMS); TSUCHIYA K (KEK); NAKAGAWA K, SAKURAI Y (Hitachi Cable) E-mail: banno.nobuya@nims.go.jp

1. はじめに

相変態 Nb₃Al 線材のピンニング機構は依然として不明瞭 であり、結晶粒界や積層欠陥が J_c特性にどう影響を与えて いるかについて明確な結論が出ているとは言えない。本報 告では、EBSD (Electron Backscatter Diffraction) 観察 および TEM・STEM・EDS 観察を通じて Nb₃Al 相の結晶組織を 詳しく調べ、結晶組織と J_cの相関について議論したい。

2. 実験方法

通常相変態 Nb₃A1 相の微細組織は、急熱急冷処理により 生成した Nb-A1 過飽和固溶体への加工ひずみを制御するこ とで変化する。加工によって歪みエネルギーの蓄積ととも に、母相内部に転位などの多数の微細欠陥が導入され、こ れらが相変態の促進と核生成サイトの増加をもたらすた めである。

本報告では、結晶組織の異なる試料として、加工度の異 なる3種類の試料を調べた。1つは急冷処理後加工を加え ず直ちに相変態させたもの(試料 ORA)、2つ目は急冷処理 後45%の減面加工を加えたもの(45RA)、最後に急冷処理 後に95%の強加工が加わったリスタック線材と呼ばれる試 料(95RA)である。

これらの試料の EBSD 観察ならびに透過電子顕微鏡(TEM) 観察・EDS (Energy Dispersive x-ray Spectroscopy) 分 析を行った。またそれらの試料の J_o特性を測定し、組織と の相関について考察した。

3. 結果と考察

Fig. 1 に試料 0RA の TEM 像を示す。この図に示されるように、Nb₃A1 相の中で高密度の積層欠陥が非常に広範囲に 導入されている。また A15 相の中には双晶界面も見られた が、数としては非常に少ない。結晶粒径は加工度が上がる につれ単調に減少し、45RA で 2.6 μ m なのに対し 95RA では 500 nm 程度にまで微細化する。しかしながら J_c を見ると 0RA から 45RA では J_c の向上が見られるものの、45RA と 95RA では大差が見られていない(0RA: 545, 45RA: 751, 95RA: 800 A/mm²@18 T)。

Fig. 2には、3種類の試料について同スケールで比較した TEM 像を示す。これをみると、J_cの低い試料 0RA で積層欠陥密度が比較的高く、J_cの高い他の試料では積層欠陥密度が緩和されているように見える。また一方で、以前観察した高温変態させた試料では、積層欠陥密度が大幅に緩和され、それとともに B_{c2}が 1.5T 程度改善されることが確認されているが、J_c-B 特性をみると、低磁界側で J_cが伸びてこない傾向が見られた。以上のことを合わせて考えると、J_cすなわちピンニング特性は積層欠陥密度と深い関わりがあり、J_cにとって最適な積層欠陥密度があるのかもしれない。

Fig. 1. TEM image of sample ORA where the sample was directly transformed from as-quenched BCC phase.

Fig. 2. TEM images for samples (a)0RA, (b)45RA, (c)95RA. Non-Cu $J_{\rm c}s$ at 18 T of those samples are 545, 751, 800 A/mm².

なお本研究の一部は平成21年度産業技術研究助成事業の一環で行われた。

ジェリーロール(JR)法線材における Nb₃Sn 超電導層の生成過程と特性

Synthesis and superconducting performance of Jelly Roll (JR) processed Nb₃Sn wires

太刀川 恭治, 安藤智紘(院), <u>金田尚也(院)</u>, 柴山拓也(学部)(東海大•工);竹内 孝夫(NIMS) K. Tachikawa, T. Ando, <u>N. Kaneda</u>, T. Shibayama (Faculty of Engr., Tokai Univ.); T. Takeuchi(NIMS) E-mail:tacsuper@keyaki.cc.u-tokai.ac.jp

1. はじめに

Sn 基合金シートを用いて作製した JR 法 Nb₃Sn 線材は offset~18.1K、遷移幅<0.1K の T_c と、offset B_{c2} (4.2K)~26.5T の優れた特性を示す。本研究では JR 法 Nb₃Sn 線材におけ る Nb₃Sn 層の生成過程、線径及び Nb シート厚さ等の諸条 件の線材特性に対する影響について検討した。

2. 実験方法

Sn-Ta, Sn-B 及び Sn-Nb 系の混合粉末に少量の Ti を置換 し、これに Cu を添加した混合粉末を溶融拡散し、ボタン 状の Sn 基合金を作製した。これをプレスによりプレート とし、平ロール圧延により厚さ 80 μ mのシートに加工した。 ついで厚さ 100 μ mの市販の Nb シートと重ね、Nb-3.3at%Ta 芯に巻きつけて JR 複合体を作製したが、今回は 160 μ m t の Nb シートを用いた JR 複合体も作製した。これらの複 合体を Nb-3.3at%Ta シースに挿入して溝ロール加工後線 引きして 1.0, 1.2 及び 1.4 mm φ の単芯線を得た。線材の熱 処理後の断面組織を SEM 及び EPMA により観察し、また 高磁界における試料の overall J_c (non-Cu J_c)を測定した。

3. 実験結果と考察

100 µm t の Nb シートを用いて作製した JR 線材では 750℃×100h の熱処理により、JR 部のシートが全て Nb₃Sn になるとともに、シースの内側にも厚い Nb₃Sn 層が生成 される。Nb₃Sn 層の生成過程を調べる為に、Fig.1 に 8/1(Sn/B)-4Ti+3Cu シート線材の 750℃×10h の短時間熱処 理後の EPMA の分析結果を示した。また、Fig.2 には Fig.1 の試料の SEM による線材破断面の組織を示した。Fig.1 よ り、JR 部には少量の残留 Nb と、均一な Nb₆Sn₅ 層が生成 していることが分かった。この熱処理条件では状態図では NbSn₂が生成されるが、Cu, Ti を添加している影響で Nb₆Sn₅が生成されたと考えられる。Fig.2 より、生成した Nb₆Sn₅ は顕著な柱状晶を示し、残留 Nb の周りには薄い Nb₃Sn 層が生成していることが分かる。100h の熱処理に より Nb₆Sn₅+Nb→Nb₃Sn の生成過程を経て、厚く均一で化 学量論比に近い Nb₃Sn 層が生成され、前述の高い T_c B_{c2} を示すと考えられる。

Fig.3 に線径の異なる 6/1(Sn/Ta)-4Ti+3Cu 線材と 160 μ m t の Nb シートを用いた 8/1(Sn/Ta)-6Ti+4Cu 線材の non-Cu J_c 遷移を示す。これより、線径を細くすることで non-Cu J_c が増大することが分かる。これは、拡散が効率的になり Nb₃Sn 層の areal fraction が増すためと考えられる。一方、 160 μ m t の Nb シートを用いた線材は、低磁界側での J_c の 増大が著しくなり、4.2K, 21T でも 300A/nm² 近い non-Cu J_c が得られるが 24T 以上では増加はみられない。

160 µm t の Nb シートを用いて作製した線材の 750℃熱処 理後の SEM による線材破断面の組織は、100h の熱処理後 も JR 部には少量の Nb が残留しており、シース部に生成 した Nb₃Sn 層が 100 µm t Nb シート線材に比べ薄くなる。 これは厚い Nb シートに Sn が消費されるためと考えられ る。Nb₃Sn 層の結晶粒径は 100 μ m t Nb シート線材より若 干小さくなり、 J_c の増加に対応する可能性がある。このよ うにJR 法 Nb₃Sn 線材の J_c -B 特性と組織は Nb シート厚(Nb 量)によって大きく変化することが明らかにされた。

Intensity (Arbitary Unit)

Fig.1 EPMA mapping and line scanning chart on the cross-section of Sn-B based sheet wire heat treated at 750°C for 10h.

Fig.2 SEM structure on the fractured surface of Sn-B based sheet wire heat treated at 750° C for 10h.

Fig.3 non-Cu J_c versus magnetic field curves of Sn-Ta based sheet wire with different diameter and Nb sheet thickness heat treated at 750°C for 100h.