DI-BSCCO 線材の異方的熱伝導率 Anisotropic thermal conductivity of DI-BSCCO tape

<u>内藤 智之</u>,藤代 博之 (岩手大);藤上 純 (住友電工) <u>NAITO Tomoyuki</u>, FUJISHIRO Hiroyuki (Iwate Univ.); FUJIKAMI Jun (Sumitomo Electric Industries) E-mail: tnaito@iwate-u.ac.jp

1. はじめに

超伝導線材をコイルや電流リードとして用いる場合、設計段 階で外部からの熱侵入量や内部発熱の排出量を見積もること が不可欠である。従って、熱伝導率は非常に重要なパラメー タとなる。これまで、我々はDI-BSCCOテープ[1]単体や複 数枚のDI-BSCCOテープをバンドルしたサンプルの熱伝 導率を測定してきた[2]。また、前回の学会ではDI-BSCCO テープを用いて製作されたダブルパンケーキコイルの異方的 熱輸送特性を報告した[3]。コイル半径方向の熱輸送を詳細 に解析するためにはテープ厚さ方向のデータが必要となる。 しかしながら、単体のテープ厚は0.22mm程度であることから 定常熱流法での測定は困難であった。今回、DI-BSCCOテ ープを厚さ方向に積層したサンプルを作製し、その熱伝導率 も測定した。また、同様の手法でテープ幅方向の熱伝導率も 測定した。

2. 実験方法

Fig.1(a)および 1(b)に厚さ方向および幅方向積層サンプル の概略図をそれぞれ示す。積層サンプルは、DI-BSCCO テ ープのタイプ H を使用してハンダ接合にて作製された。黒色 は Bi2223 フィラメント部分、灰色は Ag シース部分をそれぞれ 表す。/はテープ長手方向、wはテープ幅方向、t はテープ厚 さ方向をそれぞれ表す。熱伝導率は定常熱流法により 6-250 K の温度範囲で測定した。

3. 実験結果および考察

Fig.2に3方向の熱伝導率の温度依存性 $\kappa(T)$ を示す。/方向 はタイプHテープ単体の $\kappa(T)$ [2]である。w方向の $\kappa(T)$ はほぼ/ 方向の $\kappa(T)$ と一致した。これは、Bi2223フィラメント部分の熱伝 導への寄与が無視出来るほど小さく、w方向の熱伝導も/方向 と同様にAgシース部分が担っていることを示している。t方向 の $\kappa(T)$ は250Kから50K付近までは/及びw方向の $\kappa(T)$ とほぼ同 様の振る舞いであった。しかしながら、20K付近で観測された 低温ピークは非常に小さかった。また、t方向の $\kappa(T)$ の絶対値 は及びw方向に比べて一桁程度小さかった。Fig.2挿入図に 200Kの κ 値で規格化した熱伝導率の温度依存性 $\kappa(T)/\kappa(200K)$ を示す。50~250Kの温度領域で3者は良い一 致を示した。従って、この温度領域ではt方向でも与えた熱流 はAgシース部分を通っていると考えられる。但し、50K以下でt 方向の $\kappa(T)/\kappa(200K)$ は/及びw方向の $\kappa(T)/\kappa(200K)$ から大きく ずれており、熱伝導機構が異なる可能性がある。

Fig.1 Schematic view of the stacked DI-BSCCO tapes along (a) the thickness [t] direction and (b) the width [w]direction. / represents the length direction. Black and gray regions represent the Bi2223 filaments and Ag region, respectively.

Fig.2 Temperature dependence of the thermal conductivity of the single DI-BSCCO tape (*I*-direction) [2] and the stacked DI-BSCCO samples (*w*- and *t*-directions). Inset shows the temperature dependence of the reduced thermal conductivity $\kappa(T)/\kappa(200\text{K})$ of the same samples shown in the main panel.

- 1. N. Ayai et al.: Physica C 468 (2008) 1747.
- T. Naito *et al.*: Cryogenics **49** (2009) 429; IEEE Trans. Appl. Supercond. 19 (2009) 3034.
- T. Naito *et al.*: Abstracts of CSJ Conference **81** (2009) 84.

バリア入り Bi2223 線材における垂直磁界下での交流損失低減化 Reduction of AC losses in Bi2223 tapes with resistive barriers in a perpendicular magnetic field

稻田 亮史, 奥村 康裕, 牧原 知秀, 太田 昭男(豊橋技科大); 李 成山, 張 平祥(西北有色金属研究院)
INADA Ryoji, OKUMURA Yasuhiro, MAKIHARA Tomohide, OOTA Akio (TUT); LI Chengshan, ZHANG Pingxiang (NIN)
E-mail: inada@ee.tut.ac.jp

1. はじめに

我々は、超電導フィラメント間に酸化物バリアを導入した低損失 Bi2223 線材の開発に関する研究を進めている。 過去の研究により、SrZrO₃(加工性改善のため Bi2212 を 少量混合)バリアを導入しツイスト長 $L_t \varepsilon 5 \sim 6 \text{ mm}$ 程度 に狭小化することで、77 K、垂直磁界下での結合周波数 f_c (= $1/2\pi \tau_c$, τ_c :結合時定数)を 300 Hz 以上に向上できるこ とを確認している^[1]。しかしながら、 $L_t < 10 \text{ mm}$ とした際 に線材中のフィラメント形状が大きく乱れ、臨界電流密度 J_c が数 kA/cm²に低下してしまう問題がある。

本研究では,L_tの狭小化によるJ_c低下を抑制した上で商 用周波数よりも十分に高いf_cを得ること目的として,線材 作製時のバリア導入厚,線幅の狭小化およびツイスト加工 法に関する改良を試みた。作製したバリア線材の通電J_c を過去の線材と比較すると共に,垂直磁界下での損失低減 効果を評価した。

実験および結果

Powder-in-tube 法により SrZrO₃(Bi2212 を 20wt%混合) をバリア材とする 19 芯線材を作製した。横断抵抗の向上 には、バリア材をある程度厚く導入し、完成試料でのバリ アの連続性を確保する必要がある。一方で、バリアが厚す ぎると線材全体としての加工性が低下し、ツイストした際 にフィラメント形状が大きく乱れ、深刻な J_c低下を引き 起こすと考えられる。本研究では、線材作製において①バ リア塗付厚を従来の 100 μm から 50~60 μm 程度に低減、 ②線幅の狭小化(=2.7 mm)、③ツイスト加工時の中間熱 処理の導入、といった対策を試みた。

作製したバリア線材(断面寸法 2.7 mm × 0.24 mm)の J_c (77 K,自己磁界下)のツイスト長 L_t 依存性を Fig. 1 に 示す。比較のため、過去に作製したバリア線材(線幅 3.1 mm,バリア塗付厚 100 µm)の結果を合わせて示す^[1]。 L_t の大小に関係なく、 J_c は従来試料よりも向上しており、非 ツイスト試料で 18 kA/cm², $L_t = 4 \sim 7$ mmのツイスト試料 で 12~14 kA/cm²が得られた。断面観察の結果、従来試料 で発生していたフィラメント形状の乱れやブリッジング が大きく抑制されていることが確認され、これが通電特性 の向上に寄与していると考えられる。

Lt = 4 mm のバリア線材における, 1 周期当たりの垂直 磁界下での交流損失 Qmの周波数依存性(77 K, 5 mT)を Fig.2に示す。図より,損失中に含まれる結合損失Q。が極 大を示す結合周波数fcは260 Hz程度と見積もられる。こ れまでの Bi2223 線材の交流特性向上に関する研究におい て, $f_{\rm c}$ > 250 Hz(垂直磁界下)と $J_{\rm c}$ > 10⁴ A/cm²を同一試料 で達成した報告は我々の知る限り皆無であり, 重要な結果 と考える。Fig. 3 には, 45 Hz にて測定した規格化損失 Qm/Ic の垂直磁界振幅依存性を示す。比較のため、線幅 3.7 mm および 2.7 mm の非ツイスト線材の測定結果を合わせて図 中に示す。 $f_c = 260$ Hz の達成に伴い、 $L_t = 4$ mm のバリア 線材の損失は,5 mT 以上の範囲において同一線幅(2.7 mm)の非ツイスト試料と比較して40~50%程度低減され ている。更に、3.7 mm 幅試料と比較した場合、線幅低減 の効果が重畳することで、10 mT 以上の範囲において 55 ~65%程度と顕著な損失低減が確認された。

Fig. 1. Critical current densities J_c at 77 K and 0 T for barrier tapes plotted against the inverse of twist pitch lengths L_t .

Fig. 2. Frequency dependence of AC losses Q_m at 5 mT for barrier tape with $L_t = 4$ mm.

Perpendicular field amplitude B_o (mT)

Fig. 3. Normalized AC losses $Q_{\rm m}/I_{\rm c}$ at 45 Hz for barrier tape with $L_{\rm t}$ = 4 mm. The data for non-twisted tapes with their widths of 3.7 mm and 2.7 mm are also shown for comparison.

謝辞

本研究の一部は、科学研究費補助金(No. 20686020, No. 22560270), (財)東電記念科学技術研究所研究助成および(財)中部電力基礎技術研究所研究助成(No. R-20302)の 支援により実施された。

参考文献

[1] R. Inada, et al.: Supercond. Sci. Technol. 22 (2009) 085014.

加圧焼成法によって作製された Bi-2223/Ag テープ材の 長手方向均一性と *E-J* 特性との対応 Correlation between Longitudinal Homogeneity and *E -J* Characteristics in Bi-2223/Ag Tape Fabricated by CT-OP Process

<u>川口 鉄平</u>, 東川 甲平, 井上 昌睦, 木須 隆暢(九大); 菊地 昌志, 小林 慎一, 中島 隆芳, 林 和彦, 佐藤 謙一(住友電工) <u>KAWAGUCHI Teppei</u>, HIGASHIKAWA Kohei, INOUE Masayoshi, KISS Takanobu (Kyushu Univ.); KIKUCHI Masashi, KOBAYASHI Shin-ichi, NAKASHIMA Takayoshi, HAYASHI Kazuhiko, SATO Ken-ichi (SEI) E-mail: t_kawaguchi@super.ees.kyushu-u.ac.jp

1. はじめに

ビスマス系高温超伝導線材は、加圧焼成法の確立により、 その電流容量と歩留まりが飛躍的に向上している^[1]。一方、 同線材に関しては、材料性能の観点からは更なる性能向上 の可能性が残されており、その知見を得る上で臨界電流制限 因子の解明が重要な課題となっている。そこで本研究では、 走査型ホール素子磁気顕微鏡システムを用いて、異なる仕様 の Bi-2223 線材に対して電流分布評価を行い、四端子法で 得られる E-J 特性との関係について検討した。

2. 実験

測定対象とした線材の諸元をTable 1 に示す。表中の*I*_cと*n* 値は、1 μV/cmを電界基準として 77 K 自己磁界下で四端子 法により得られたものである。どの線材も同程度の *I*_c 値を有し ているが、*n* 値が若干異なっていることに注意を要する。これ らの線材に通電した際の自己磁界分布を走査型ホール素子 顕微鏡によって測定し、ビオ・サバール則の逆変換によって 電流分布をシート電流密度分布として評価した。

3. 結果と考察

測定温度 80.5 K において 100 A 通電した際に得られた シート電流密度分布を Fig.1 に示す。なお, x 軸が線材の長 手方向, y 軸が線材の幅方向に対応している。これまでに報 告してきたように^[2], どの線材に関しても線材幅方向には分布 が存在するが、長手方向にはかなり均一な電流分布が得られ ている。一方,上記電流密度ベクトルの向きをプロットしたもの を Fig. 2 に示す。すなわち、同図は x 軸を基準とした電流密 度ベクトルの角度の分布であり,電流の迂回成分を表現して いる。上記では線材間で同様に見えた長手方向の均一性も、 実は線材ごとに電流の迂回の頻度がかなり異なっていること がわかる。ここで注目すべき点は、電流迂回の頻度が低い線 材ほど、E-J 特性における n 値が高くなる傾向が見られること である。従って,四端子法で得られている Ic 値は線材断面内 の各位置における超伝導フィラメントの結晶性だけでなく,長 手方向の局所不均一性の影響を反映した結果であり、本研 究によればその両者を切り離して臨界電流の制限因子を議 論することができる。これらは、線材の更なる高 L 化の指針を 決定する上で極めて有用な情報であると考えられる。

謝辞

本研究の一部は,科学技術振興機構(JST)の戦略的イノベ ーション創出推進事業(S-イノベ)における研究課題「次世代 鉄道システムを創る超伝導技術イノベーション」の支援を得て 行ったものである。

参考文献

[1] N. Ayai et al.: IEEE Trans. Appl. Supercond., Vol. 17 (2007) pp. 3075-3078.

[2] Y. Honda et al.: Abstracts of CSJ Conference, Vol. 81 (2009) p. 81.

Table 1 Specifications of the samples

	$I_{\rm c}$ (@1 µV/cm, 77 K, s.f.)	<i>n</i> -value
Sample 1	178 A	18.5
Sample 2	186 A	18.4
Sample 3	189 A	19.6
Sample 4	177 A	20.4

Fig. 2. Direction of sheet current density.

5 mm

600A/cm-w 級厚膜化 GdBCO/IBAD コート線材の空間均一性と磁場中電流輸送特性

Spatial homogeneity and in-field current transport properties in 600 A/cm-w class thick GdBCO/IBAD coated conductors

木須 隆暢、井上 昌睦、東川 甲平、Arkadiy Matsekh、Rene Fuger (九大); 飯島 康裕、柿本 一臣、齋藤 隆(フジクラ);

KISS Takanobu, INOUE Masayoshi, HIGASHIKAWA Kohei, MATSEKH Arkadiy, FUGER Rene (Kyushu Univ.); IIJIMA Yasuhiro, KAKIMOTO Kazuomi, SAITO Takashi (Fujikura Co.); AWAJI Satoshi, NAMBA Masafumi, WATANABE Kazuo (Tohoku Univ.); IZUMI Teruo (ISTEC) E-mail: kiss@sc.kyushu-u.ac.jp

1. はじめに

希土類系高温超伝導線材の実用化のためには、磁場中で の高い臨界電流(I)値の実現と共に、低交流損失化のための 細線化加工に耐え得る優れた均一性の実現が不可欠である。 電流容量増大のためには臨界電流密度(J_)の向上と共に、超 伝導層の厚膜化による有効断面積の増大が重要な因子となる。 しかしながら、従来手法では、厚膜の増大と共に」。値は低下し、 従って 1。値の増大は飽和することが知られている。フジクラの lijima 等のグループは、パルスレーザ蒸着法による成膜条件の 改善により、この厚膜時の 」。劣化の問題を改善することに成功 し、2.5 µmの GdBCO 膜を有するコート線材を R2R 方式により 長尺に亘って安定して製造できることを示した「」。本線材の 77K、自己磁場中の I。値は 600 A/cm-w 程度の値を有する。

本研究では、本線材の臨界温度ならびに臨界電流密度の空 間均一性をμmスケールの空間分解能を有する低温レーザ顕 微鏡法によって評価した。

2. 実験結果及び考察

1cm幅の IBAD 基板上に堆積させた 2.5µm 厚のGdBCO層 を有する高温超伝導テープ線材中に、幅100 µm 長さ1 mm の マイクロブリッジを形成し、測定試料とした。77K 自己磁界にお けるブリッジの臨界電流値を四端子法によって測定した結果、 620 A/cm-w(1cm 幅の換算値)であった。

Fig.1に、室温で得られたレーザスポット照射に伴うゼーベッ ク電圧応答の2次元像を示す。均一な応答が得られており、局 所欠陥等は存在しないことが分かる。紙面の都合上グラフは掲 載できないが、位相応答も一定の値を示しており、ブリッジ全体 で単一ドメインを有する、均一な組織を有する事が確認できた。

Fig. 2 に超伝導転移領域での低温レーザ顕微鏡像を示す。 -定電流バイアス時のレーザ照射に伴う微小温度変調(ΔT)に 対する、電圧応答(ピーク電圧値で規格化)を示す。即ち、レ ザ照射位置での抵抗の温度微分係数 ΔR/ΔT の温度依存性: 温度に対して積分すれば局所的な R-T 転移曲線を得る。Inset はブリッジ中の観測位置を示す。臨界温度Tcの差異は0.2K以 下であることが分かる。

Fig. 3 に 84K, 1T の外部磁界下における磁束フロー損失の バイアス電流依存性を、低温レーザ顕微鏡により可視化した結 果を示す。磁束フローは試料内でほぼ均一に発生しており、臨 界電流の面内分布が均一であることを示している。

3. まとめ

本研究では、620 A/cm-wの臨界電流値を有する GdBCO 厚 膜線材の超伝導特性の空間均一性ならびに高磁場下の臨界 電流特性を、それぞれ低温レーザ顕微鏡ならびに四端子法に よって調べた。臨界温度の空間分布を調べた結果、面内の T_c 分布は0.2K以内の優れた均一性を有していることが示された また、高磁場下の磁束フロー損失分布を観測した結果、従来 法に比べ 』の空間均一性も飛躍的に向上しており、細線化加 工に問題となる電流阻害因子の頻度が大きく減少している事が 明らかとなった。当日は、27T までの高磁場領域、20~77K の 温度範囲における、四端子法による電流輸送特性の測定結果 についても紹介する。

謝辞

本研究は、イットリウム系超電導電力機器技術開発の一環として ISTECを通じて NEDO からの委託を受けて実施するとともに、日 本学術振興会の科研費(20360143)の助成を得て行ったもので ある。

Fig. 1. Laser induced thermoelectric (LITE) image showing homogeneous crystal structure in the bridge.

Fig. 2. Temperature dependence of normalized $\Delta R / \Delta T$ around superconducting transition obtained by the low temperature laser scanning microscopy (LTLSM). Inset shows measured points in the bridge.

(c) I = 350mA, V = 4 uV

Fig. 3. Spatial distribution of flux flow dissipation obtained by the transport LTLSM at 84 K and 1 T of external field.

参考文献

[1] 柿本一臣ほか、第 81 回 2009 年度秋季低温工学・超電 導学会、2B-a02、2009年11月。

淡路 智、難波 雅史、渡辺 和雄 (東北大); 和泉 輝郎 (ISTEC)

直流ならびに交流通電時における RE-123 線材銀拡散接合部の 3 次元電流分布評価

Three-Dimensional Current Distribution at Silver Diffusion Joint of RE-123 Coated Conductor Carrying DC and AC Transport Current

<u>東川 甲平</u>,本田 貴裕,井上 昌睦,木須 隆暢 (九大); 筑本 知子,坂井 直道,和泉 輝郎 (ISTEC); 岡元 洋 (九州電力) <u>HIGASHIKAWA Kohei</u>, HONDA Yoshihiro, INOUE Masayoshi, KISS Takanobu (Kyushu Univ.); CHIKUMOTO Noriko, SAKAI Naomichi, IZUMI Teruo (ISTEC); OKAMOTO Hiroshi (Kyushu Electric Power Co., Inc.)

E-mail: kohei@super.ees.kyushu-u.ac.jp

1. はじめに

希土類系高温超電導(RE-123)線材の機器応用に際しては, その規模やメンテナンスを考慮すると線材間の接続技術の確 立が不可欠となる。一方,同技術の確立のためには,線材接続 部の電磁現象の把握が不可欠であり,線材面内の電流分布の みならず特に線材間の電流トランスファーまで評価する必要が ある。そこで本研究では,銀拡散接合法によって接続された RE-123線材を対象に,上記のような3次元的な電流分布を直 流通電時ならびに交流通電時に対して評価した。

2. 方法

測定対象となる試料の写真を Fig.1 に示す。同試料は,5 mm幅と2mm幅のGdBCO線材が銀拡散接合法^[1]によって接続された構成となっている。同試料に通電した際の自己磁界分布を走査型ホール素子顕微鏡を用いて測定し,Biot-Savart 則の逆問題を解くことで同試料内の電流分布を2次元シート電流密度分布として評価した。また,得られたシート電流密度分布に含まれる情報から線材間の電流トランスファーを評価した。

3. 結果·考察

試料温度80K,25Aの直流通電時において得られたシート 電流密度分布を Fig.2 に示す。なお,同分布は両線材の電流 分布の重ね合わせに対応する。一見,5mm 幅の線材から2 mm幅の線材への電流遷移は5mm幅線材の終端付近で集中 して行われているように見受けられる。一方,同分布では y= ±1 mm付近において起伏が存在し、その起伏がx方向に進む に従って大きくなっていることに注意を要する。実は,予め行っ ている理論解析によれば,両線材の電流分担割合によってこ の起伏の大きさが変化することがわかっている[2]。すなわち,こ の原理によれば、両線材の電流分担割合を線材長手方向の各 位置において評価することができる。その結果をFig.3に示す。 5 mm 幅線材に流れていた電流が接合部において 2 mm 幅線 材に線形的に遷移しており、両線材間の電流のやり取りが接合 長のほぼ全長を通して均一に行われていることがわかる。また、 別途3次元有限要素法による数値解析も行っており,その結果 を Fig. 4 に示す。両線材の電流分布の重ね合わせが Fig. 2 に 示す実験結果を上手く表現できており,また両線材間の電流ト ランスファーに関しても上述の状況が再現されていることがわか る。以上から、本研究によって本試料における線材間接続が良 好であることがわかり、またその電磁現象を議論するためのモ デルを構築することに成功したと言える。発表当日には, 交流 通電時の結果についても報告する予定である。

謝辞

本研究は、イットリウム系超電導電力機器技術開発の一環として ISTEC を通じて NEDO からの委託を受けて実施するとともに、日本学術振興会の科研費(20360143, 20・1945)の助成を得て行ったものである。

- [1] J. Kato et al.: Abstracts of CSJ Conference, Vol. 73 (2005) p. 241.
- [2] K. Higashikawa et al.: The 2010 Annual Meeting Record I.E.E. Japan, No. 5 (2010) p. 144.

Fig. 1. Optical micrograph of the sample.

Fig. 3. Current transfer between the two tapes estimated by the sheet current density distribution shown in Fig. 2.

Fig. 4. Sheet current density distributions in total, upper tape and lower tape obtained by 3D finite element method.

永久磁石法による YBCO テープ線材の Jc 分布測定 Measurement of critical current density distribution of YBCO coated conductors by permanent magnet method

服部一輝 梅津一也 山田博信 斎藤 敦 <u>大嶋 重利</u> 高山彰優 神谷淳 (山形大学) 生野壮一郎(東京工科大) HATTORI Kazuki, UMETSU Kazuya, YAMADA Hironobu,SAITO Atsushi, <u>OHSHIMA Shigetoshi</u> (Yamagata Univ.) TAKAYAMA Teruou, KAMITANI Atsushi (Yamagata Univ.) IKUNO Soichiro(Tokyo Univ. Tech.)

E-mail: ohshima@yz.yamagata-u.ac.jp

1. はじめに

YBCO テープ線材は現在、超伝導応用の主力材料として、 世界的に研究開発がおこなわれている。すでに、幅 1cm の長 尺テープ線材で、臨界電流が 300A を超えるものが報告され ている。このような長尺のテープ線材を市場に出すときには、 長尺線材の Jc を保障しなければならない。その保障のために は、非破壊で、長尺線材の Jc を評価することが必要である。 現在、磁化測定法やホール効果法が利用されているが、測 定時間や精度等で問題がある。我々は、永久磁石法で超伝 導薄膜の Jc を評価できることを報告してきた。今回は、YBCO テープ線材の Jc を非破壊で精度よく測定できることを確認し たので報告する。

2. 装置の概要

Fig.1に測定原理を、Fig.2 に装置の写真を示す。原理は、 極めて単純で、永久磁石を超伝導テープ線材に近づけ、そ の時磁石に働く力を測定すればよい。そうすると、図1(b)のよ うなグラフが得られる。磁石と超伝導体の距離がゼロとなるとこ ろの力を求めると、その値が Jc に依存する[1-2]

Fig.1. Schematic drawing of Jc measuring method using a permanent magnet. (a) model (b)Magnetic force vs. distance between a permanent magnet and HTS film surface.

Fig.2. Photo of the permanent magnet method system

3. 実験結果

Fig.3 に、Super Power 社の幅 12mm,長さ 50mm の YBCO テープ線材の Jc 測定結果を示す。超伝導層は、厚み 1 ミクロ ンの YBCO であり、Ic は公称300A である。Jc に変換すると 2.5MA/cm² である。測定間隔を 10mm,20mm,50mm と変えて 測定したが、結果ほほとんど同じであった。テープ線材の大 部分の領域の Jc は、3.3MA/cm²以上であるが、一部 Jc の小 さい領域(2.6MA/cm²以下)がある。これがテープ線材の Jc を 律則しているものと思われる。尚、0~5mm,45~50mm の測 定領域において、Jc が小さくなるように見えるのは、端部効果 によるもので、本質的ではない。

Fig.3 Jc distribution of HTS coated conductor measured by permanent magnet method.

4. まとめ

永久磁石を用いたJc評価法を用いて、YBCOテープ線材の Jc分布を測定した。その結果、YBCOテープ線材のJcを測 定できること、また、Jcの小さい領域を検出できること が明らかとなった。現在は、磁石を上下させて力を測定 後、試料を移動するという手法を用いているので、測定 スピードはそれほど速くない。しかし、磁石をテープ線 材上に固定し、テープを移動しながら力を測定する手法 が可能ならば、より早い測定が可能となる。その検討に ついては、当日報告する。

参考文献

- S.Ohshima, K.Takeishi, A.Saito, M.Mukaida, Y.Takano, T.Nakamura, T.Suzuki, M.Yokoo." A Simple Measurement Technique for Critical Current Density Using a Permanent Magnet" IEEE Trans. Appl .Super. 15 (2005) 2911-2914
- S.Ikuno, T.Takayama, A. Kamitani, K.Takeishi, A.Saito, S..Ohshima," Analysis of Measurement Method for Critical Current density by Using permanent Magnet" IEEE Trans. Appl. Super. 19 (2009) 3750-3754

— 6 —

ピックアップコイル群によるマルチフィラメント HTS 模擬線材の電流分布測定 Measurement of AC current distributions in multifilamentary HTS model tapes by a pickup coil array

 宮原和矢,永田広大,平山斉,川畑秋馬,川越明史,住吉文夫 (鹿児島大・工);和泉輝郎,塩原融 (SRL-ISTEC)

 <u>MIYAHARA Kazuya</u>, NAGATA Koudai, HIRAYAMA Tadashi, KAWABATA Shuma, KAWAGOE Akifumi,

 SUMIYOSHI Fumio (Kagoshima University); IZUMI Teruo, SHIOHARA Yuh (SRL-ISTEC)

 E-mail:k2590086@kadai.jp

1. はじめに

交流用高温超伝導機器の実用化のためには、機器の巻線 に使用されるHTS線材の低損失化が必要であり、そのために スクライビング加工によるマルチフィラメントHTS線材の開発 が進められている。この線材内の電流分布特性を定量的に把 握することは重要であるが、その特性評価法は未だ十分には 確立されていない。そこで本研究では、この低損失加工され たHTS線材内の電流分布を非接触で定量的に評価できる測 定法を確立することを目的としている。本測定法では、極小サ イズのピックアップコイル群を試料線材に直接貼り付けて試料 線材表面付近の磁場分布を測定し、その結果から数値計算 により電流分布を求める[1]。今回は電流算出プログラムの高 速化による電流算出精度の向上を試みた。また、電流算出精 度の向上のために、ピックアップコイル群の校正精度の改善 やピックアップコイル群のコイル構成についても検討した。

2. マルチフィラメント HTS 模擬線材とピックアップコイル群

本測定法の測定精度を評価するために、マルチフィラメント HTS線材を模擬した試験導体を用いた。模擬線材は、線材 幅が1mm程度のCuテープ線材またはGd系線材を5本平 行に並べたもので、線材間には絶縁のために約100µm径の テグスを挿入している。この短尺直線状の線材にピックアップ コイル群を貼り付けて、線材周辺の磁場分布の周方向成分を 測定する。各コイルは φ40µmの絶縁Cu線で紙製のボビンに 巻線されている。その断面積は4.46mm×0.33mm、コイル長は 0.25mm、層数は3、ターン数は17である。測定精度の評価は、 模擬線材に通電した既知の電流と、ピックアップコイル群によ る測定磁場分布から算出した電流分布とを比較することによ って行う。

3. 測定磁場分布からの電流算出方法

本測定法では、測定磁場分布を使って、電流分布を以下 に示す手順で求める。まず、線材断面を幅方向に分割し、次 に、分割したこれらの線材に電流分布を与え、それぞれの電 流分布パターンに対する磁場分布を計算する。計算した磁場 分布と測定した磁場分布とを最小二乗法を用いて比較して電 流分布を求める。今回は電流分布パターンの発生方法を変 更して計算の高速化を図り、より細かな電流分布パターンま で計算できるようにすることで電流算出精度の向上を試みた。

4. 計算結果および測定結果

Fig.1は5本のフィラメントから成るHTS模擬線材の磁場分 布を誤差なしで測定できたと仮定した場合の電流算出結果を 示したものである。フィラメント内の電流分布も得られるように、 この計算ではフィラメント毎に電流要素を3個配置した。横軸 は電流値分割数であり、分割数が大きいほど発生させる電流 分布を細かく表現できることに対応している。縦軸は数値計算 により算出した各電流要素の電流値と、電流要素に事前に与 えた電流値(設定電流値)との誤差である。プロット点は算出 した電流要素の電流値のうち設定電流値との誤差が最大のも のを 4 つの通電パターン毎に表示したものである。電流算出 プログラムの改良により、プログラムによる算出誤差はこれま での 10%程度から 2%程度にまで低減した。

Fig.2(a)は、2mm 幅の Gd 系線材 5 本から成る模擬線材に 実際に通電したときの測定磁場分布を示したものであり、縦 軸は測定電圧、横軸はピックアップコイルの位置である。 Fig.2(b)はこの測定結果から算出した電流分布である。縦軸 は電流値で、棒グラフは各フィラメントの算出電流値、プロッ ト点はシャント抵抗で測定した電流値を示している。同図より 測定誤差は 10%程度であることがわかる。現状の測定精度を 向上させるために、ピックアップコイル群の校正精度の改善や コイル群の形状についての検討を現在進めている。

謝辞

本研究は「イットリウム系超電導電力機器技術開発」事業の 一環として、新エネルギー・産業技術総合開発機構(NEDO) の委託により実施したものである。

参考文献

[1] K. Miyahara, et al.: Abstracts of CSJ Conference, Vol.81(2009) p.6

Fig. 1 Calculated results of current distributions.

— 7 —

Magentoscan 法による超伝導バルクの臨界電流密度分布測定

$J_{ m c}$ profile measurement on superconducting bulk by Magnetoscan method

<u>菊池康晃</u>、半田拓也、内藤智之、藤代博之(岩手大)

<u>KIKUCHI Yasuaki</u>, HANDA Takuya, NAITO Tomoyuki, FUJISHIRO Hiroyuki (Iwate Univ.) E-mail: y.k.changemyself@hotmail.co.jp

1.はじめに

超伝導バルクの臨界電流密度(J)は磁化測定によって決定す るのが一般的だが、バルク体の切断が必要となる。Eistererらに より提案された Magnetoscan 法は、ホールセンサと永久磁石を 使用して非破壊でバルク表面近傍の相対的な Jc分布を調べるこ とができる[1]。本研究ではMagnetoscan 法の装置を立ち上げ、 装置及び測定条件の最適化を行ったので報告する。さらに、パ ルス着磁後の超伝導バルクの捕捉磁場分布と Magnetoscan 信 号との比較を行い議論する。

2.実験方法

図1に装置のセンサ部の概念図を示す。直径6mm、高さ10mm、磁束密度430mTのNdFeB永久磁石と、active aria 0.05mm×0.05mmのホールセンサを使用した。図2に示すように直径45mm、高さ1.3mmの半円形超伝導バルクに欠陥を 模擬するため、幅0.8mm深さ1.3mmの溝をV字型に入れた。 液体窒素でバルクを冷却後、センサ部の永久磁石がホールセン サより先行するようにピッチ0.5mmでXY面内をスキャンした。 永久磁石の中心からホールセンサの中心までの距離をX、ホー ルセンサからバルクまでの距離をZとし(図1)、最適条件を検討 した。X、Zの最適条件を決定した後、捕捉磁場分布の分かって いる厚さ5mmの超伝導バルクに対してMagnetoscanを行いパ ルス着磁分布との比較を行った。

3.結果と考察

図2に、最適条件X=6.4 mm、Z=0.25 mmでの77 Kにおけ る信号分布と(上)と各 Y 値における Magnetosacan 信号の X 依 存性(下)を示す。上図において、V 字溝の形状を確認することが 出来た。下図において、ピークになっているところが、*&* が低い 場所であり、バルクのエッジでは本質的に *&* が低いためピーク が存在する。V 字擬似欠陥では、Zehetmayer らの論文[1]で示 されたように、欠陥にピークとディップが存在した。

図3に直径45 mm、厚さ5 mmの超伝導バルクに比較的弱 いパルス磁場(2.8T)印加した場合の捕捉磁場分布と Magnetoscan信号分布を示す。Magnetoscan信号が強いほど *L*が弱いことを示しているが、成長時に種をセットした部分の信 号が強く*L*が低いことを確認した。このバルクは選択的に磁束が 侵入・捕捉した左上部が *L*が低いことが予測されるが、 Magnetoscan信号との対応は今のところ認められない。この原 因は、Magnetoscan信号はバルク表面下0~1 mmからの信号 であるため、さらに深い位置のピン止め中心が磁場捕捉に効い ているためと思われる。現在、2 つの超伝導体ブロック間にgap を挟み、Magnetoscan 信号の発生形状の測定を行っており、講演ではそれらの結果も併せて報告する予定である。

参考文献

 M Zehetmayer, M Eisterer and H W Weber *et al.*, Supercond. Sci. Technol. **19** (2006) S429-S437.

Fig. 1 Setting of Hall sensor and permanent magnet for the Magnetoscan technique.

Fig. 2. Magnetoscan profiles at 77 K on the superconducting bulk with V-shaped ditch.

Fig.3. (a) The trapped field profile on the superconducting bulk 5 mm in thickness after applying pulse field of 2.8 T at 60 K. (b) Magnetoscan profile for the same bulk at 77 K.

— 8 —

二層超電導電力ケーブルにおける交流損失の解析的モデル Analytical model of the ac losses in power cables with two-layer superconducting tapes

<u>馬渡 康徳</u>(産総研); Alexis P. Malozemoff (AMSC) <u>MAWATARI Yasunori</u> (AIST); MALOZEMOFF Alexis P. (AMSC) E-mail: y.mawatari@aist.go.jp

1. はじめに

高温超電導テープ線材を用いる電力ケーブルは、多数の 超電導テープ線材が円筒フォーマの周囲に多層に並列して 配置された構造をもつ.このような多層超電導電力ケーブル における交流損失の振舞を理解するためには、多層に巻か れた超電導テープ線材における層同士の電磁相互作用を解 明することが重要である.

本研究では、このような二層超電導電力ケーブルの交流 損失を解析するための簡単なモデルを考案した。外層と内層 の電磁相互作用について簡単な仮定を設けて、二層電力ケ ーブルの問題を単層電力ケーブルの問題に帰着させ、超電 導テープ線材に生じる交流履歴損失について臨界状態モデ ルを基に理論的考察を行った。

2. 二層超電導電力ケーブル状導体

Fig. 1 に、二層電力ケーブルを模擬したモデル導体の断面図を示す. 超電導テープ線材は平坦で、簡単のため長手(紙面垂直)方向には直線状で無限に長いとして、螺旋巻の効果を無視する. 導体は内層と外層の二層に配置した超電導テープ線材で構成される. 内層におけるパラメータは、線材が接する円筒面の半径を R_1 , 超電導テープ線材の幅を $2w_1$,線材数を n_1 ,線材エッジ間の距離(ギャップ)を $2g_1$,線材の超電導層の厚みを d_1 ,および臨界電流密度を j_{c1} とする. 外層におけるパラメータも同様に、それぞれ R_2 , $2w_2$, n_2 , $2g_2$, d_2 ,および j_{c2} とする. これらの構造パラメータは幾何学的な制約により全てが独立ではなく, $n_k \gg 1$ の場合に $2g_k \approx 2\pi R_k/n_k - 2w_k を$ 満たす. 線材内の超電導層の厚み d_k は、 R_k , $2w_k$,および $2g_k$ に比べて十分小さいものとする. 臨界電流密度 j_{ck} は一定とする臨界状態モデルに基づいて、超電導層の履歴損失による交流通電損失を求めた.

内層,外層に流れる交流輸送電流の振幅をそれぞれ I_1 , I_2 とし,内層,外層における交流損失をそれぞれ Q_1 , Q_2 とする と,二層ケーブル状導体全体に流れる交流輸送電流振幅はI= I_1 + I_2 ,導体全体の交流損失は $Q = Q_1 + Q_2$ で与えられる.

3. 二層超電導電力ケーブル状導体の解析モデル

Fig. 1 のような二層超電導電力ケーブル状導体における 電流・磁場分布を考えるには、内層と外層の電磁相互作用を 考慮しなければならない.一般に、中空円筒状導体に流れる 電流により、導体の外側に磁場が生じる.二層電力ケーブル 状導体においても同様に、内層に流れる電流 *I*₁ による磁場に より外層は大きな影響を受けるが、外層に流れる電流 *I*₂ が内 層に及ぼす影響は比較的小さいと考えられる.

そこで,内外層の電磁相互作用を単純化して,次のような モデルを考える.すなわち,内層電流 I,により生じる磁場を導 体中心軸においた線電流 I,による磁場とみなして,内層が外 層に及ぼす影響を考慮するが,外層が内層に及ぼす影響は 無視する.このモデルは,内外層が十分離れていれば良い 近似となると考えられるが,実際の多層超電導電力ケーブル において層間の距離は導体半径に比べて十分小さいので, このモデルの妥当性は慎重に検証しなければならない.

4. 二層超電導電力ケーブル状導体の交流損失

このモデルによれば、内層における交流損失 Q_1 は、外層 の存在を無視して電流 I_1 を運ぶ単層電力ケーブル状導体の 交流損失として求められる. 一方、外層における交流損失 Q_2 は、中心軸にある線電流 I_1 の影響を考慮しつつ、電流 I_2 を運 ぶ単層電力ケーブル状導体の交流損失として求められる. こ うして、二層電力ケーブル状導体の問題が、文献[1–3]で解 析された単層電力ケーブル状導体の問題に帰着され、交流 損失 $Q = Q_1 + Q_2$ が解析的に求められる.

文献[1]の解析手法を用いて輸送電流が臨界電流より十 分小さい場合の損失を求めた結果,外層の損失 Q_2 は,外層 電流 I_2 を見かけの電流 $I_{2,app} = I_2 + c_{21}I_1$ と置き換えた単層ケー ブル状導体の損失と等価であることがわかった.ここで c_{21} は, 外層の構造パラメータで決まる係数で,一般に $0 < c_{21} < 1$ の 範囲にある.輸送電流が臨界電流より十分小さい場合の交流 損失は電流振幅の4 乗に比例するので,内層の影響を考慮 する場合($I_1 = I_2$)の外層における損失 Q_2 は,内層の影響を無 視する場合($I_1 = 0$)に比べて($1 + c_{21}$)⁴倍となる.

本研究の一部は, ISTEC を通じて NEDO からの委託を受けて実施したものである.

- [1] Y. Mawatari and K. Kajikawa, Appl. Phys. Lett. 92 (2008) 012504
- [2] A.P. Malozemoff, G. Snitchler, and Y. Mawatari, IEEE Trans. Appl. Supercond. 19 (2009) 3115
- [3] Y. Mawatari, A.P. Malozemoff, T. Izumi, K. Tanabe, N. Fujiwara, and Y. Shiohara, Supercond. Sci. Technol. 23 (2010) 025031.

Fig. 1: Schematic of the cross sections of a power cable with two layers of superconducting tapes.

不均一磁界中での YBCO 積層導体の交流損失特性

AC loss properties of assembled YBCO coated conductors exposed to inhomogeneous magnetic fields

<u>桐原 裕紀</u>, 平山 斉, 川越 明史, 川畑 秋馬, 住吉 文夫(鹿児島大学) 式町 浩二, 平野 直樹, 長屋 重夫(中部電力)

KIRIHARA Yuki, HIRAYAMA Tadashi, KAWAGOE Akifumi, KAWABATA Shuma, SUMIYOSHI Fumio(Kagoshima University); SHIKIMACHI Koji, HIRANO Naoki, NAGAYA Shigeo (Chubu Electric Power Co) E-mail: k3959743@kadai.jp

1. はじめに

近年、電力系統安定化用などの高温超伝導電力貯蔵装置 (SMES)の開発研究が盛んに行われている。現在開発中の SMES コイルは、パンケーキ形状に巻線された要素コイルを複 数個トロイド配置した構造をしている。このために、この要素コ イルの巻線用導体に印加される磁界は、1ターンの間でも導体 長手方向にわたって変化している。本研究の目的は、このよう な不均一な磁界分布が導体の交流損失に及ぼす影響を明ら かにすることである。そのために、長手方向に捻った試料導体 を準備し、この導体の一様磁界中での交流損失特性を調べた。

2. YBCO 線材の導体化と測定条件

交流損失の測定に使用した YBCO 線材の諸元を Table.1 に 示す。線材幅 10mm、厚さ0.13mmの YBCO 線材を300mmに 切り出し、4 枚積層したものを試料導体とした(以後4 枚積層導 体とよぶ)。また比較のために 1 枚のものも測定試料とした(以 後1 枚導体とよぶ)。導体幅広面に垂直に印加される磁界を導 体長手方向に変化させるために、Fig.1 に示すように導体の両 端を± $\theta/2(\deg)$ 捻った試料導体を準備し、これを一様磁界空 間に挿入して交流損失測定を行った。このときの θ を導体の 捻り角度とする。今回準備した試料導体は 1 枚導体および 4 枚積層導体ともに捻り角度が 0,45,90,180,360 deg のもので ある。なお、捻り角度を 360 deg とした場合でも、臨界電流の低 下は 2 %であった。測定は、周波数 0.04Hz~10Hz、磁界振幅 1mT~90mT の交流横磁界を印加し、ピックアップコイル法を 用いて液体へリウム中で行った。

3. 不均一磁界中での交流損失の捻り角度依存性

測定した1枚導体と4枚積層導体の交流損失の捻り角度依存性をそれぞれFig.2(a),(b)に示す。横軸は導体の捻り角度 である。縦軸は、測定した導体単位体積当りの交流損失を捻り 角度が0degのときの損失で規格化した規格化損失である。 図中の実線は、捻った試料導体の導体幅広面に印加される 垂直磁界成分による損失を導体全長にわたって積分して求め た計算値である。なお、このとき、捻り角度0degの導体で測 定した損失は、1枚導体の場合は印加磁界の2.64乗に、4枚 積層導体の場合は印加磁界の2.67乗に比例したので、この関 係を用いて計算した。

捻り角度を変化させた1枚導体、4枚積層導体どちらの場合 でも測定値に周波数依存性はなかったため、測定値は磁化損 失のみであると考えられる。また Fig.2(a)からは、1枚導体の測 定値は計算値とよく一致していることがわかる。このことから、 測定された損失は導体幅広面に垂直な磁界成分による磁化 損失であり、1枚導体では不均一磁界が交流損失に及ぼす影 響は小さいと考えられる。一方、4枚積層導体の測定値は Fig.2(b)に示すように、印加磁界が 50mT と 90mT の場合は測 定値と計算値がよく一致しているが、印加磁界が 1mT~20mT の場合には、捻り角度によっては計算値との差が大きくなって いる。これより、50mT や90mT といった線材の中心到達磁界近 傍やそれ以上の印加磁界下においては、不均一磁界の交流 損失に及ぼす影響は小さく、そのときの交流損失は導体幅広 面に垂直な磁界成分による磁化損失から求められることがわ かった。印加磁界が中心到達磁界より十分小さい場合に、測 定値と計算値が一致しない原因としては、不均一磁界による 影響あるいは積層した試料線材の臨界電流分布特性のばら つきなどが考えられるが、これらの検討結果は当日報告する。

謝辞

本研究の一部は「イットリウム系超電導電力機器技術開発」 事業の一環として、新エネルギー・産業技術総合開発機構 (NEDO)の委託により実施したものである。

Table. 1 Specifications of the YI	BCO coated conductor	
width (mm)	10	
thickness (mm)	0.13	
length (mm)	300	
<i>I</i> _c (A) @ 77K	194	

Fig. 2 Twist angle dependences of ac losses in YBCO coated conductors. (a)single tape, (b)stacked conductor

GdBCO コート線材のフープ力試験

Hoop Stress Test for GdBCO Coated Conductor

西島 元, 峯岸 一博, 淡路 智, 渡辺 和雄 (東北大学); 和泉 輝郎, 塩原 融 (ISTEC) NISHIJIMA Gen, MINEGISHI Kazuhiro, AWAJI Satoshi, WATANABE Kazuo (Tohoku University); IZUMI Teruo, SHIOHARA Yuh (ISTEC)

E-mail: gen@imr.edu

1. はじめに

我々は Coated conductor (コート線材) を強磁場高強度 線材として扱っている。既に CVD-YBCO コート線材を 11 T. 4.2 K においてフープ応力印加試験を行い、ハステ ロイ基板を外側に巻いた場合に1 GPa、基板を内側に巻い た場合でも 777 MPa までのフープ応力印加が可能である ことを示した[1,2]。しかしながら、導体をエポキシ樹脂 で含浸したことに起因する擾乱,歪ゲージ接着不良,電 極近傍における劣化と焼損等の課題も残った。

本研究では GdBa₂Cu₃O_v (GdBCO) コート線材の液体へ リウム・強磁場中フープ応力試験を行い,短尺 Ic-歪特性 実験結果と比較検討を行う。

2. 線材および試料コイル諸元

試料線材は ISTEC-SRL より提供された GdBCO 線材を用 いた。諸元を Table 1 に示す。線材幅は 5 mm、基板厚さと 超伝導層厚さはそれぞれ 100 µm と 1.2 µm である。

この線材を GFRP 製溝付き巻枠 (幅 5 mm, 深さ 5 mm の角溝)に1.5ターン巻き付け、試料コイルとした。この とき, 基板を外側にして巻いた Coil A, 内側に巻いた Coil Bの2種類を製作した。Fig.1に写真を示す。 歪ゲージは 巻線前に接着した。また, Coil B の電圧端子は巻線後に 取り付けたが、Coil A の場合は巻線前に取り付けた。

試験は液体ヘリウム中で行った。ハイブリッドマグ ネットの超伝導アウトサートにより外部磁場 11 T を印加 した状態で試料コイル通電電流を変化させてフープ応力 を印加した。

3. フープ応力試験結果

Fig. 2 に Coil A の 4.2 K, 11 T におけるフープ応力-歪曲 線を示す。フープ応力は外部磁場・電流密度・コイル半 径(BJR)で求めた。ここに、電流密度は、通電電流値を線 材全断面積で除することで求めた。

5個の歪ゲージのうち, #1, #3, #4, #5は良い一致を示し た。また、最大印加フープ応力は 1250 MPa であり、この ときの歪は最大 0.7%であった。最大印加フープ応力以下 ではフープ応力-歪曲線は線形かつ可逆であることから, 弾性域内であると考えられる。

得られたフープ応力-歪曲線の傾きから求めた弾性率は 192 GPa であった。この値は Osamura らによって得られた 77 Kにおける弾性率[3]と同程度であるが, 我々は 4.2 K での値を求めるべく、実験を行っているところである。

Fig. 3 には Coil A の 4.2 K, 11 T における電圧-電流特性 を示す。常伝導転移電圧は観測されなかった。今回は通 電電流源の制限のため、470 A までの通電とした (最大 フープ応力もこのために制限された)が、4.2K、11Tでは 1250 MPa/0.7% 歪下で 470 A 以上通電可能であることがわ かった。

参考文献

西島他,第77回2007年度秋季低温工学・超電導学会

講演概要集 p. 203

- [2] G. Nishijima, et al., IEEE Trans. Appl. Supercond. 18 (2008) 1131.
- [3] K. Osamura, et al., Supercond. Sci. Technol. 22 (2009) 025015.

Table 1 Specification of GdBCO coated conductor

Stabilizer	Ag	10 µm
Superconducting layer	PLD-GdBCO	1.2 μm
	CeO ₂	0.5 µm
Duffer	LaMnO ₃	19 nm
Bullel	IBAD-MgO	4 nm
	Gd-Zr-O	110 nm
Substrate	Hastelloy C276	100 µm

Fig. 1 Photograph of hoop stress test coil

Fig. 2 Hoop stress - strain characteristic at 4.2 K, 11 T.

— 11 —

GdBa₂Cu₃O_yコート線材の臨界電流の歪依存性 Strain dependence of critical current for GdBa₂Cu₃O_y coated conductor

峯岸 一博, 西島 元, 淡路 智, 渡辺 和雄 (東北大); 和泉 輝郎, 塩原 融 (ISTEC) MINEGISHI Kazuhiro, NISHIJIMA Gen, AWAJI Satoshi, WATANABE Kazuo (Tohoku Univ.); IZUMI Teruo, SHIOHARA Yuh (ISTEC) E-mail: kazuhiro m@imr.tohoku.ac.jp

1. はじめに

高温超伝導体 REBa₂Cu₃O_y(REBCO、RE は Y または希土 類元素)を線材化した REBCO コート線材は磁場中での臨界 電流密度 (J_c) 特性に優れており、さらに Hastelloy など高強度 材料を基板として用いているため、高い機械強度を持ってい る。

強磁場マグネットへの応用においては通電時、発生磁場と 通電電流によって発生するローレンツ力により、線材にフープ 応力と呼ばれる応力が加わる。フープ応力はマグネットが膨 張する向きに印加され、このとき線材には引張り歪が加わる。

REBCO線材の高い機械強度はこの点で有利であるが、実際にマグネットに応用するためには、線材の臨界電流に対する引張り歪の効果について調べる必要がある。

本研究では、REBCO線材の中でも磁場中での特性が良い GdBCO線材について、液体 N2中、自己磁界下での臨界電流(I_c)の引張り歪依存性を測定した。

2. 試料緒元および実験方法

試料線材の諸元を Table 1 に示す。IBAD(Ion-Beam Assisted Deposition)法により作製された MgO バッファ層を持つ Hastelloy 基板上に PLD(Pulse Laser Deposition)法によって GdBCO 層が成膜されている。試料幅は 2 mm である。

Fig.1に測定装置の試料取り付け部の写真を示す。試料は 電極にハンダ付けされ、片端の可動側電極が移動することに より引張り力を加えられる。ハンダ付けした試料の上から真鍮 製のプレートを電極にネジ止めし、試料を押さえつけることに よって応力印加による膜面の剥離を防止する。

液体 N_2 中、自己磁界下において試料に引張り力を印加し ながら I_c 、引張り盃、線材に加わる応力を測定した。電圧端子 間距離は 10 mm、 I_c 決定の電界基準は 1 μ V/cm とした。

引張り歪の測定は試料に接着した歪ゲージおよび低温で 較正した自作の Nyilas 型伸び計を用いて行った。伸び計の 評点間距離は 12.5 mm である。

3. 実験結果

Fig.2 に試料線材の 77 K における応力-歪曲線を示す。応 力-歪曲線の傾きから求めた線材の Young 率は 214.6 GPa だ った。

Fig.3 に *I*_cの引張り歪依存性を示す。*I*_cは引張り歪に対して 単調に減少した。引張り歪 0.37%以下での *I*_c変化は可逆的で あった。

当日は磁場中での測定結果についても報告する予定である。

Table 1 Specification of GdBa₂Cu₃O_y coated conductor

	material	thickness	
Stabilizer	Ag	10 µm	
Superconducting	PLD-	1.2	
layer	GdBCO	1.2 μm	
	CeO ₂	0.5 μm	
Buffer	LaMnO ₃	19 nm	
Buller	IBAD-MgO	4 nm	
	Gd-Zr-O	110 nm	
Substrate	Hastelloy	100 µm	

Fig. 1 Experimental set up for measurement of tensile strain dependence of I_{c} .

Fig. 2 Tensile stress-strain curve of GdBCO coated conductor at 77 K.

Fig. 3 Tensile strain dependence of I_c of GdBCO coated conductor at 77 K under self-field.

STO 単結晶基板上の YBCO 薄膜の輸送特性に及ぼすひずみの影響

Influence of strain on transport properties in YBCO film on STO single crystal substrate

<u>菅野未知央</u>(京大);松本要,本田泰崇(九工大)

SUGANO Michinaka (Kyoto Univ.);

MATSUMOTO Kaname, HONDA Yasutaka (Kyusyu Institute of Technology)

E-mail : sugano@kuee.kyoto-u.ac.jp

1. はじめに

Y 系線材では他の超伝導線材には見られない特異な臨 界電流のひずみ効果が見出されている。過去の研究で明ら かになった Y 系線材のひずみ効果の特徴は以下のように まとめられる。[1][2]

①温度依存性

自己磁場下では、40~83 K の広い温度範囲で線材長さ 方向に負荷した引張/圧縮ひずみ対して I_c が放物線的に変 化することが確認されている。I_cが最大値をとるひずみ値 (ピークひずみ)は低温ほど圧縮側に移動する傾向が見ら れるが、これは YBCO 膜に蓄積される残留ひずみの温度 依存性とは一致していない。また、低温ほど I_cのひずみ感 度は小さくなる傾向にある。

②磁場依存性

同一温度であれば高磁場ほど *I*cのひずみ感度は大きく なる傾向にある。ただし、磁場依存性は低温ほど顕著でな くなる。また、77 K以上の高温で数 T 以下の比較的低磁 場においては、*I*cのひずみ依存性に放物線的な関係が見ら れなくなり、圧縮/引張ひずみ領域にそれぞれピークを持 つダブルピーク現象が観察されている。磁場の増大ととも にピークひずみは移動することが確認されている。

類似の放物線的な I_c のひずみ依存性は A15 型超伝導線 材でも確認されているが、この場合は超伝導体の結晶粒内 の3次元的なひずみ状態が $T_c \approx B_{c2}$ に影響を及ぼす結果と 解釈されており、その結果としてピークひずみは磁場には 依存しない。つまり、Y 系線材では I_c のひずみ効果がより 複雑な微視的要因に支配されていると考えられる。特に Y 系線材は粒界、粒内の両方がマクロな輸送特性に寄与して いるため、個々のひずみ効果を明らかにすることが重要で ある。

以上のような背景から、本研究ではまず最も単純な系である、単結晶基板上に成膜した YBCO 膜の *I_c*-ひずみ特性を実験的に明らかにすることを目指した。

2. 実験方法

10 mm 角の STO 基板上に PLD 法により YBCO 膜を 成膜した後、フォトリソグラフィーによって YBCO 膜を 幅 0.3 mm のブリッジを有する4端子測定形状に加工した。

YBCO 薄膜へのひずみ負荷方法は van der Laan らにより 報告されている 4 点曲げ法を採用した[3]。STO 基板を厚 さ 3 mm の Cu-Be 板に接着し、基板側に圧縮ひずみが作用 する方法に曲げ変形を与えた。ひずみゲージを STO 基板 表面に取り付け、負荷ひずみをモニターした。輸送特性の 測定は液体窒素中またはヘリウムガス雰囲気中で行い、1 μ V/cm の電界基準で I_c を決定した。

3. 実験結果

Fig.1に液体窒素中、自己磁場下で測定したYBCO膜の Ic-ひずみ曲線の一例を示す。負荷ひずみ-0.3%以下では

Fig. 2 Comparison of I_c -strain curves between a coated conductor and the YBCO film on STO substrate.

-0.15%にピークを持つ放物線的な振る舞いが観察されている。一方、それ以上のひずみでは YBCO 膜における損 傷発生に起因すると思われる *I*c の急激な低下が観察された。

以前に同様の方法で測定した MOCVD-YBCO線材と今回 の結果の比較を Fig. 2 に示す。横軸はピーク値をゼロ点に シフトし、縦軸は最大値で規格化している。また、曲線は 2 次関数によるフィッティングを示す。YBCO/STO の低ひ ずみ領域でのひずみ依存性は線材の可逆領域の振る舞い とよく一致していることがわかる。

当日の発表では、YBCO 薄膜の磁場中でのひずみ依存性 についても報告する予定である。

- 1. Sugano et al, SUST, Vol. 21 (2008) 115019.
- 2. Sugano et al, SUST (2010) submitted.
- 3. D C van der Laan et al, SUST (2010) 014004.

RE123 系線材の応力 - ひずみ特性(2) 線材製造プロセスと曲げひずみ特性

Stress-strain characteristics on RE123 wires 2

山田 雄一,山田 穣,藤原 昇,和泉 輝郎,塩原 融(ISTEC);

齊藤 隆(フジクラ);青木 裕治(昭和電線);大松 一也(住友電工);八木 正史(古河電工)

YAMADA Yuichi, YAMADA Yutaka, FUJIWARA Noboru, IZUMI Teruo, SHIOHARA Yuh (ISTEC);

SAITO Takashi (Fujikura Ltd.); AOKI Yuji (SWCC); OMATSU Kazuya (Sumitomo Electric); YAGI Masashi (Furukawa Electric) E-mail: yamada-yuichi@istec.or.jp

1. はじめに

Y 系超電導電力機器技術開発において、実用線材として 期待できる各種の製造プロセスで RE123 系線材の開発を行 っている。製造プロセスによって予歪量などが異なり、使用上 重要な曲げひずみ特性が変化すると考えられる。

現在開発を行ってる各種の RE123 系線材の曲げひずみ 特性を Goldacker 方式により評価した。

2. 評価線材

I-PLD (ISTEC 製、PLD-GdBCO/IBAD-MgO 中間層/ハス テロイ)、F-PLD(フジクラ製、PLD-GdBCO/IBAD-MgO 中間 層/ハステロイ)、K-MOD(昭和/フジクラ製、 TFA-MOD-YBCO/IBAD-GZO 中間層/ハステロイ)及び S-PLD(住友製、PLD-GdBCO/配向金属基板)の4種類の線 材と、それらに K-MOD は古河電工にて、I-PLD 及び S-PLD は住友電工にて銅めっきを施したものを評価対象とした。線 材の幅は比較のため、4~5mm とした。

3. 曲げ試験方法

"Goldacker 式"の曲げ試験装置[1] [2]を用いて、液体窒素中で連続的に曲げ(戻し)を加え、所定の各ひずみ状態に おける臨界電流測定を行った。それぞれ超電導線材は銀め っき等の保護層を施した超電導層側に銅板の電極を押さえ つけ、電流を通電する構造である。

手順としては、直状で固定した線材を超電導層側を内側と する方向に曲げを加え、直径 10mm まで徐々に曲げながら臨 界電流測定を行った後、直状に戻し、次に反対側に徐々に 曲げながら臨界電流測定を行った。

4. 評価結果

Fig.1 にI-PLD線材(銅めっきなし)の、Fig.2 にK-MOD線 材(銅めっきなし)の曲げ評価結果を示す。グラフの左半分が 超電導層が内側、すなわち超電導層が圧縮を受ける方向で、 グラフの右半分が超電導層が外側、すなわち超電導層が引 張を受ける方向である。

超電導層を圧縮側に曲げた場合、直径 10mm の曲げまで ではそれぞれ約 80%、約 45%まで徐々に臨界電流が低下した が、直状に戻すと、ほぼ当初の臨界電流に復帰した。一方、 超電導層を引張側に曲げた場合、直径 20mm 前後で急激に 臨界電流が低下した。2 種類の線材の比較では、I-PLD が圧 縮方向に強く、K-MOD は引張方向に強かった。

5. 結論

RE123線材には各種の製法が採用されているが、機械的 特性が異なる。しかし、いずれもイットリウム系超電導電力機 器技術開発プロジェクトの中で目指している応用には十分な 曲げ特性を有する。

6. 謝辞

本研究は、イットリウム系超電導電力機器技術開発の研究 として、新エネルギー・産業技術総合開発機構(NEDO)の委 託を受けて実施したものである。Goldacker式試験装置につ いてはKIT・Goldacker先生、NIMS・黒田先生及び岩手大学・ 笠場先生のご協力を頂きました。ここにお礼申し上げます。

- W. Goldacker, et al.: 2002 Adv. Cryog. Eng. Vol. 48 (2002) p.469
- 2. 山田他: 2009 秋季低温工学·超電導学会概要集 p.130

RE123 系線材の特性把握(1) 過電流劣化と線材剥離に関する検討 Understanding of deterioration phenomenon for RE123 coated conductors (1) Study on deterioration by over current and delamination behavior

<u>坂井 直道</u>, 中尾 公一, 波頭 経裕 (ISTEC-SRL), 王 旭東, 石山 敦士 (早大), 加藤 丈晴 (JFCC), 八木 正史 (古河電 工), 青木 裕治 (昭和電線), セルゲイ・リー、筑本知子、市川 祐士, 藤原 昇, 田辺 圭一 (ISTEC-SRL) <u>SAKAI Naomichi</u>, NAKAO Koichi, HATO Yoshihiro (ISTEC-SRL), WANG Xudong, ISHIYAMA Atsushi (Waseda Univ.), KATO Takeharu(JFCC), YAGI Masashi (Furukawa Electric), (AOKI Yuji (SWCC Showa Holdings), SERGEY Lee, CHIKUMOTO Noriko, ICHIKAWA Yuji, FUJIWASRA Noboru, TANABE Keiichi (ISTEC-SRL) E-mail: nsakai@istec.or.jp

1. はじめに

近年、RE123 系線材を用いた各種機器開発が盛んに行われている。ここで、これら機器用の線材が、その使用 環境において、特性変化するのかどうかを予め確認して おくことも重要である。我々は、機器用線材開発の一環 として、各種ストレス(過電流、湿度、機械歪、熱歪、 加熱)による線材の特性変化を調査している。このうち 今回は、過電流に対する劣化と線材の剥離(層間密着力) に関する検討結果を報告する。

2. 実験方法及び結果

2-1 連続過通電試験; Ag安定化層付Y123 線材(幅 2.5mm)に交流過電流を印加し、その経時変化評価を行っ た。予備試験により無歪の状態では何ら変化が生じなか ったことから、試料は、予め湿度劣化させ、さらに曲げ 歪を印加することで、それらストレスの重畳効果も併せ て確認することとした。I。を超えると電流は、Ag安定化層 に分流しはじめ、限界電流値(I_{1imit})以上で完全にAgに乗 り移る。ここで、I。以上I_{1imit}以下で長期間交流過電流を印 加(I_c=11Aに対し 55A印加)し、その変化計測を行った。 図 1(a)及び(b)に実験に用いた試料の電流分流特性と試 験前後のI-V曲線を示す。これより、I_{1imit}以下の交流過通 電試験ではI-V特性には変化が見られなかった。

2-2 パルス過電流試験; Cu/Ag安定化層付Y123 線材 (幅 5mm)のパルス過電流劣化試験[1]は早稲田大学で実施し、その詳細は、本講演会(1P-p02)で報告している[2]。 ここで、我々は、試験後に劣化した箇所をテープスター によるI。分布測定、磁気光学顕微鏡観察、SQUID非破壊検 査、SEM観察などを行うことにより、どのような劣化が生 じたのか調査を行っている。図2(a)にI。分布変化を示す。 これより、初期に欠陥が検出された箇所と少し異なる箇 所で、材料の劣化が生じたことが分かる。また、図2(b) のSQUID検査結果の矢印部に剥離の可能性を示すシグナ ルが得られており、現在微細組織を確認中である。

2-3 剥離に関する検討; RE123 系線材は層状構造を有 し、何らかの強烈なストレスにより材料間の剥離が生じ ることがある。しかし、剥離の原因はまだ明確にはなっ てはいない。ここで、剥離を層間の密着力として捉え評 価を行った。評価例として、PLD法で作製したGd123線材 の層間密着性を 4-point bending (4PB) 法[3]で調べた結 果を図 3(a)に示した。試料 1 及び 2 はそれぞれ 20m/hと 60m/hで成膜した試料であり、試料 1 の方が試料の密着性 が良好であった。また、図 3(b)に剥離面のXPSによる同定 結果を示す。これより、剥離位置は双方の試料ともGd123 とCeO₂の界面近傍,数nm程度Gd123 側であり、両者の密着 性の差は,界面近傍でのGd123 中の酸素量の違いを反映し ていると推測している。

3. まとめ

長期連続交流過通電試験及びパルス過電流試験より、 過電流に対しては、フラックスフロー領域では劣化せず、 安定化層を流れる電流による発熱が原因で劣化した可能 性が推測された。また、線材の剥離現象の理解のため、 層間密着性の評価と剥離面の調査を行い、線材が剥離し やすいのは、RE123/CeO₂界面近傍の少しRE123 側であるこ となどが分かった。本研究は「イットリウム系超電導電 力機器技術開発プロジェクト」としてNED0の委託により 実施したものである。

Fig.2 (a) I_c distribution before and after over current experiment and (b) SQUID signal after over-current experiment

Fig.3 (a) Fracture energy measurement by 4PB and (b) XPS spectra of fracture surface.

- A.Ishiyama etal. : IEEE Trans. Appl. Supercnd., vol.19, No.3 (2009) pp.3483-3486
- X. Wang et al., : Abstracts of CSJ Conference, (2010) spring, No. 1P-p02
- S.Abe, : Monthly (NISSAN ARC.LTD) Vol.18 No.9 and No.10 (2009)

YBCO Coated Conductor における局所歪と双晶構造の相関

Influence of twin structure with local strain exerted on YBCO layer in YBCO coated conductors

長村 光造(応用科学研)、町屋 修太郎(大同大学)、土屋 佳則(物材機構)、

ハルヨ ステファン、鈴木 裕士、菖蒲 敬久、桐山 幸治(原子力機構)、菅野 未知央(京大)

OSAMURA Kozo (RIAS), MACHIYA Shutaro (Daido Univ), TSUCHIYA Yoshinori (NIMS),

HARJO Stefanus, SUZUKI Hiroshi and SHOBU Takahisa KIRIYAMA Koji(JAEA)and SUGANO Michinaka (Kyoto Univ) E-mail: kozo_osamura @rias.or.jp (9 point)

1. はじめに

Spring-8の白色X線および J-PARCのパルス中性子を用いて、 YBCO テープ中のYBCO層に生ずる局所歪について詳しく調べた。 測定された回折弾性定数および全伸びに関する異常な振る舞いおよ び回折ピーク強度の負荷応力依存性は双晶構造に密接に関連する ことが示唆されたので報告する。

2. 実験方法

供試料として Super Power 社製 YBCO を用いた。中性子では J-PARC「匠」を、Spring-8 では BL28B2 にて、試料ステージに引張 負荷装置を設置し、テープ長手方向に一定の引張荷重を負荷した状 態で回折実験を実施した。

Fig.1 Two dimensional image of diffraction data at the north bank of TAKUMI station.

実験結果および考察

テープの特徴は Hastelloy 基板上にバッファー層、厚さ約 1 μ m の YBa₂Cu₃0_{6+d} (YBC0)層および Ag 層が積層し、その両面に銅がメッキされていることである。室温においては巨視的な降伏は 0.6%の伸びを越えると起こる。

function of applied strain.

Fig. 1 に示す「匠」の結果からは Cu (111), Cu (200)の回折線は全体に分布し、Cu のサブグレインは種々の方向を向いていることを示している。一方 YBC0 相 (020)、(200)面方位はある範囲に限られている。1 チャンネルが θ =0.041°に相当するので、テープ軸を中心に θ =±2.0°の範囲に a 軸あるいは b 軸が配向していることがわかる。

Fig. 2 に YBC0 の(040), (400)回折線から求めた回折歪の巨視 的歪依存性を示す。このように常に 2 つの回折線が同時に観測さ れるのは、微小な双晶の集合に由来するものと考えられる。外部 歪ゼロの状態を基準として、各格子面の歪を計算すると Fig. 2 のようになる。歪に直して微小な変化をみても巨視的歪が 0.7% まで直線的である。これらの直線の勾配をみると、(040)の勾配 は(400)の勾配より小さく、さらにどちらの勾配も1より小さい。 同様の解析を他の格子面についても行った結果を Table 1 に示す。 ここで(300)の歪依存性が特異なのは、共存する Cu 成分の回折線 が重なるためである。いずれの格子歪の巨視的歪にたいする勾配 は1より小さい。 (0k0)面の勾配は(h00)面の勾配より小さい傾 向が明らかとなった。

Table 1 The slope of $\Delta\,d/d$ vs A for each (hk0)

0k0	Slope	h00	Slope
030	0.826	300	-
040	0.826	400	0.870
050	0.813	500	0.891
060	0.813	600	0.843

Fig.3 Ideal twin structure existing in YBCO.

(040),(400)の回折線の強度の巨視歪依存性を調べると無歪で 強度が大きく、一旦減少したあと、徐々に増加し、極大を経たあ と減少に転ずる。2つの回折線が同じ変化の傾向を示しており、 その比はほぼ一定と考えられる。したがって当初予測していた応 力誘起相変態が起こり、2つの回折線の比が巨視的歪の増加とと もに変化するという期待は実現していないことが明らかとなっ た。

双晶関係にある結晶が双晶面で完全に整合しているときに期 待される回転角は0.96°であるが、実際にはどの程度回転するの か調べた結果については、2つの分布のそれぞれにガウス関数で fitting し、その中心値を求めるとそれぞれ1.38°, 1.44°となり、 その差は0.06°となった。

重イオン照射した Er123 における c 軸相関ピンとランダムピンの協調現象

Cooperative behavior of the random and correlated pinning in Er123 films with columnar defects

<u>淡路 智,</u>難波雅史,渡辺和雄(東北大金研),甲斐英樹,向田昌志(九大工),岡安悟(原子力機構)

AWAJI Satoshi, NAMBA Masafumi, WATANABE Kazuo (Tohoku Univ.), KAI Hideki, MUKAIDA Masashi (Kyushu Univ.),

OKAYASU Satoru (JAEA)

E-mail: awaji@imr.tohoku.ac.jp

1. はじめに

REBa₂Cu₃O_y(RE123, RE; 希土類) コート線材(Coated conductor)の開発において,人工ピンの導入が精力的になされている.人工ピンには大きく分けて,ランダムピンと相関ピンがあり,それぞれ磁束ピンニング機構が異なっている.これらは,磁束状態の違いも関係しており,その機構は複雑で,十分な理解が得られているとは言い難い.今回は,代表的な c 軸相関ピンとして重イオン照射欠陥を導入した Er123 膜の J_c 特性結果を元に, c 軸相関ピンとランダムピンの共存したモデルを構築し,その磁束ピンニング特性について議論する.

2. 実験方法

用いた試料は, PLD 法によって SrTiO₃単結晶基板上に作 製した Er123 膜である. これに, 200MeV-Au¹³⁺を照射した. 照 射量は, マッチング磁場 $B_{\phi} = 0.1$, 1.0 T となるように照射時間 を制御した. ただし, これらの欠陥量を TEM によって調べた 結果, それぞれ $B_{\phi} = 0.3$, 1.7 T であった. これらの試料に対し て, 4端子法を用いて磁場, 温度, 磁場印加角度依存性を詳 細に測定した.

3. 結果と議論

図1に、B_b=0.1 T 試料(CD0.1T)の70K におけるJ_cの角度 依存性を示す.多くのc軸相関ピンの場合に見られるように, B//c 方向にc軸相関ピンに起因したピークが現れている.この ピークは低磁場領域で非常に大きく現れているが,磁場の増 加に伴って相対的に減少し、ある中間磁場領域で極小となっ た後,さらなる磁場印加とともに増加する傾向を示す.次に, いくつかの温度に対する規格化した磁束ピンニング密度F_pを 示す. $B_{\phi} = 0.1 \text{ T}$ 試料においては, F_{p} 曲線に2つのピークが 現れるので,その低磁場側のピーク,すなわちマッチング磁 場で規格化した.その結果,マッチング磁場以下の低磁場領 域では、ほぼスケールするが、それ以上では温度低下に伴っ て F_pが相対的に増加した.これらの結果は、マッチング磁場 以下の低磁場では、c軸相関ピンが支配的となっているが、高 磁場領域でも、 c軸相関ピンに起因した J。の角度依存性に現 れるピークが存在する一方で, Fp 曲線はランダムピン的にも 見える. 従って, 2種類の磁束ピンニングのどちらか強い方が 支配的になっているのではなく、両者が共に働いていることが 示唆される.

これらの結果を説明するために、ランダムピンとc軸相関ピンのそれぞれのピンニングが共存し、統計的な平均としてマクロな特徴が現れるように両者それぞれのピン力 $F_p^{rand} \ge F_p^{corr}$ の2乗平均をとるモデルを次のように仮定する.

$$F_{\rm p} = \sqrt{\left(F_{\rm p}^{\rm rand}\right)^2 + \left(F_{\rm p}^{\rm corr}\right)^2} \tag{1}$$

$$F_{\rm p}^{rand} = A_{rand} b_{rand}^{p} \left(1 - b_{rand} \right)^{q}$$
(2)

$$F_{p}^{corr} = \begin{cases} \left(A_{corr} f_{p} / B_{\phi} \right) b_{corr} & \left(B \le B_{\phi} \right) \\ A_{corr}^{\prime} \left(1 - b_{corr} \right)^{2} & \left(B > B_{\phi} \right) \end{cases}$$
(3)

ここで, A_{rand} , A_{corr} , A'_{corr} はピンニングパラメータ, $b_{rand} = B/B_g^{rand}$, $b_{corr} = B/B_g^{corr}$ はランダムピンとc軸相関ピンに対する 磁束ガラス転移磁場による規格化磁場である. このモデルで

は、 $F_p^{rand} \geq F_p^{corr}$ の相対的な比によって、c軸相関ピン的な振る舞いが決定される. その結果、図1で示したような c 軸相関 ピンに起因した J_c の角度依存性に表れるピークの振る舞いや、 図2に示したような F_p 曲線の2つのピークが現れる場合と、そうでない場合があることなど、複雑な挙動を原理的にすべて 説明することが可能であることが分かった. 例えば、ランダムピ ンのパラメータをp=1, q=2とし、ランダムピンと相関ピンの最大 ピンカの比を 1.3 とした場合には、2つのピークが現れるが、 2.0 の場合には1つのピークとなり、図2の結果を定性的に再 現できる.

Fig. 1 Angular dependence of J_c for the CD0.1T sample at 70 K.

Fig. 2 Normalized F_p curves at various temperature for the CD0.1T sample.

Fig. 3 Calculation results of F_p curves

YBCO 薄膜線材の熱伝導率 Thermal conductivity of YBCO coated conductor

<u>内藤 智之</u>, 菊池 康晃、古田 大樹、藤代 博之(岩手大); 岡元 洋、林 秀美(九州電力); 五所 嘉宏、藤原 昇、塩原 融(ISTEC) <u>NAITO Tomoyuki</u>, KIKUCHI Yasuaki, FURUTA Daiki, FUJISHIRO Hiroyuki (Iwate Univ.); OKAMOTO Hiroshi, HAYASHI Hidemi (Kyushu Electric Power Co.); GOSHO Yoshihiro, FUJIWARA Noboru, SHIOHARA Yuh (ISTEC) E-mail: tnaito@iwate-u.ac.jp

1. はじめに

YBCO線材は次世代超電導線材として大いに期待されて おり、現在も臨界電流密度の向上や長尺化の研究が精力的 に行われている。変圧器やマグネットといった実用機器では 熱的安定性が重要となる。本研究では機器設計において熱 侵入および排出量の見積もりに不可欠な熱伝導率を主に測 定した。YBCO線材は、基板、中間層、YBCO層および安定 化層からなる多層構造を有する。本研究では、安定化層であ るAg層厚が異なるYBCO線材の熱伝導率を評価した。

2. 実験方法

YBCO線材はIBAD-PLD法により(株)フジクラで作製された。 ハステロイ基板(厚さ100µm)、中間層(1.7µm)およびYBCO 層(約1.5µm)は共通で、Ag層厚が異なるサンプルを用意した。 熱伝導率は一般的な定常熱流法で測定した。熱流はテープ 面に平行に印加された。

3. 実験結果および考察

図1にAg層厚の異なる3つのYBCO線材の熱伝導率の温度 依存性 k(T)を示す。Ag層厚20µm、35µmおよび55µmのサンプ ルをそれぞれYCC-Ag20、YCC-Ag35およびYCC-Ag55と呼 ぶことにする。YCC-Ag20のK(力は300Kから85K付近まで温 度の低下とともに単調に減少し、その後緩やかな増加に転じ た。50K以下で急激に増大し始め、その後20K付近でピーク を示した。YCC-Ag35およびYCC-Ag55の k(7)はYCC-Ag20 のK(T)とほぼ同様の振る舞いであった。K(T)の絶対値はAg層 厚の増加とともに増大した。図1挿入図に100Kにおける熱伝 導率のAg層厚t_{Ag}依存性を示す。K(T)のピーク温度はAg層厚 の増加にともない高温側に移動した。観測されたKTのピー ク構造は、しばしば高純度金属のKTDに特徴的な振る舞いで ある。従って、YBCO線材の熱伝導は主にAg層が担っている と考えられる。図2に200Kのκ値で規格化した熱伝導率の温 度依存性 K(T)/ K(200K)を示す。60K以上の温度領域で3つの YBCO線材のĸ(T)/x(200K)は良く一致している。しかし、60K 以下ではYCC-Ag35およびYCC-Ag55の k(T)/k(200K)が YCC-Ag20の K(T)/K(200K)に比べて小さい値となった。これ は熱伝導へのAg層の寄与が厚さに対して単純に比例してい ないことを意味している。

講演では、YBCO線材の構成材料であるハステロイやAg等のκ(刀)と熱等価回路を用いて行ったYBCO線材のκ(刀)に対する解析結果も併せて報告する予定である。

Fig.1 Temperature dependence of the thermal conductivity $\kappa(7)$ of YBCO coated conductors for three different Ag thickness t_{Ag} . Inset shows t_{Ag} dependence of the $\kappa(100 \text{ K})$ value.

Fig.2 Temperature dependence of the reduced thermal conductivity $\kappa(T)/\kappa(200\text{K})$ of YBCO coated conductors which are the same samples shown in Fig. 1.

謝辞

本研究は、経済産業省プロジェクト「イットリウム系超電導電 力機器技術開発(超電導変圧器技術開発)」の一環として、 ISTECを通じてNEDOからの委託を受けて実施したものであ る。