Mini-RT 用高温超伝導磁気浮上コイルの工学設計

Engineering design of magnetically levitated high-temperature superconducting coil for Mini-RT

核融合研, 東大高温プラズマ研究センター^{▲ ○}三戸利行, 柳 長門, 小川雄一[▲], 森川惇二[▲], 九州大学[®],富士電機[©],クライオバック[®] 岩熊成卓^B,上出俊夫^C,能瀬眞一^C,伊藤郁夫^C,福居滋夫^D

^CToshiyuki Mito, Nagato Yanagi, Yuichi Ogawa^A, Junji Morikawa^A, Masataka Iwakuma^B, Toshio Uede^C, Sinichi Nose^C, Ikuo Ito^C, Sigeo Fukui^D National Institute for Fusion Science (NIFS), The Univ. of Tokyo^A, Kyushu University^B, Fuji Electric Co. ^C, Cryovac Co. ^D

e-mail: mito@nifs.ac.jp

1.はじめに

東京大学高温プラズマ研究センターでは、核融合科学研 究所及び九州大学との共同で、ダイポール磁場を利用した 先進的高ベータプラズマ閉じこめ装置 Mini-RT の設計・建 設を進めている。同装置の特徴として永久電流モードで運 転した超伝導磁気浮上コイルを用い、プラズマ真空容器中 での長時間の浮上及びプラズマ実験が計画されている。プ ラズマ実験装置としての取り扱いを容易にするため、超伝 導浮上コイルにはBi2223 高温超伝導テープを用い、永久電 流モード・寒冷供給なしの状態で、比熱による8時間以上 の浮上を可能にする設計がなされている。限られた空間で の断熱構造を含む機器構成及び配置の最適化、温度及び電 流負荷率が変化する使用条件下での高温超伝導コイルの特 性評価など、同装置の工学設計について説明する。

<u>2.Mini-RTの構成</u>

Mini-RTの構成を Fig. 1 に示す。内径 800mm のプラズマ 真空容器中に、中心直径 300mmの超伝導磁気浮上コイル が設置される。真空容器上部に設置される引き上げコイル で磁気浮上コイルを浮上させ位置制御を行う。また、真空 容器外部に設置されるサドルコイルで浮上コイルのチル トやスライディングの制御を行う。

<u>3 . 超伝導磁気浮上コイル</u>

超伝導磁気浮上コイルの諸元を Table 1に、断面構造 を Fig.2 に示す。真鍮の巻き枠に Bi2223 テープを 435 タ ーンソレノイド巻きした浮上コイルは、厚さ 3mm のステン レス製コイル真空容器中に輻射シールドと共に設置され る。磁気浮上したプラズマ実験中は冷媒の供給ができない ため、コイル及び輻射シールドの固体比熱によって、8時 間後の温度上昇を 40K 以下にする設計となっており、コイ ル及びシールドへの熱負荷は、それぞれ 0.2W 及び 0.78W 以下に厳しく制限される。コイルはプラズマ実験終了後に 真空容器下部のメンテナンス位置に降ろし、着脱式のトラ ンスファーチューブを接続して 20K まで再冷却される。

	1 8
Major/Minor radius	150 mm / 28 mm
Magnetomotive force	50 kA
Superconductor	Bi2223 tape
Operating current	115 A
Operating temperature	20 K – 40 K
Critical current at 77 K, s. f.	108 A
Stored energy	600 J
Coil inductance	0.09 H
Maximum magnetic field	Bx: 0.72 T, By: 0.93 T
Total weight	20 kg
Current decay time constant τ	245 hr at 20 K

Table 1. Specifications of a superconducting levitation coil

永久電流スイッチ(PCS)や冷媒導入部の逆止弁及び着 脱式の電流リードコネクタなどを配置するため、コイル真 空容器中の空間は非常に限られており、各部品の開発から 始める必要があった。 1600

Fig. 2 Sectional drawing of superconducting levitaion coil