# ITER TF コイルの調達進捗

## Progress of ITER TF coil manufacture

小泉 徳潔, 松井 邦浩, 中本 美緒, 山根 実, 安藤 真次, 高野 克敏, 辺見 努, 梶谷 秀樹(量研機構) <u>KOIZUMI Norikiyo</u>, MATSUI Kunihiro, NAKAMOTO Mio, YAMANE Minoru, ANDO Shinji, TAKANO Katsutoshi, HEMMI Tsutomu, KAJITANI Hideki (QST) E-mail: koizumi.norikiyo@qst.go.jp

#### 1. はじめに

量子科学技術研究開発機構(量研機構;QST)は,ITER における日本の国内機関として,ITERトロイダル磁場コイル [1](Fig.1:スペア1個を含み19個.以下,TFコイルと記す.) のうち9個のTFコイル,19個分のコイル容器の調達を担当 している.TFコイルは,ITERの超伝導コイルの中でも最大の 超伝導コイルであり,かつ,製作の難易度も最も高いコイルで ある.本稿では、TFコイルの製作進捗を報告する.

#### 2. 日本における TF コイル及び構造物調達体制

日本では、TF コイル 5 機及び欧州向け構造物の 4 機は 三菱重工、三菱電機及び現代重工が協力して、TF コイル 4 機及び欧州向け構造物の 6 機は東芝が担当し、2025 年のフ ァースト・プラズマを達成できるように、調達を進めている.

#### 3. 調達進捗

日本における TF コイルの製作進捗は、以下のとおり. ・巻線:28 ダブル・パンケーキ(DP) 完了(全 DP 数=63) ・熱処理:24DP 完了

- ・トランスファー及び導体絶縁:16DP 完了
- •DP 含浸(Fig.2):11DP 完了
- ・DP 積層及び巻線部絶縁(Fig.3):1WP 完了

TF コイルの製作における主な成果としては、TF コイルでは、 その大きさ(Fig.1参照)に対して、数mmの厳しい公差が要求 されているが、DP の製作を進めるなかで、これらの要求公差 を達成できるようになっている.主な例としては、ラジアル・プ レート(RP)の輪郭度 1mm の達成、CP 溶接後の平面度 2mm の達成、DP 含浸後の平面度 2mm の達成などが挙げられる.

日本における TF コイル構造物の製作進捗については,別報(1C-a02)で報告する.

#### 4. まとめ

日本では、9機のTFコイルの製作を進めている.約半数の DPで巻線を完成させるなど、ITERの2025年ファースト・プラ ズマを目指して、順調に製作を進めている.

#### 謝辞

TFコイルの製作では、三菱重工、東芝、三菱電機、現代重 工等多数のメーカに協力を頂き、技術的課題を解決しながら 進めています.これらのメーカのご協力に感謝します.

#### 参考文献

(1) ITER TFコイル特集号: 低温工学, 47(2012) 135-139



Fig. 2 Completed DP.



Fig.1 ITER TF coil and structures

Table 1 Major parameters of ITER-TF coil

| Conductor outer diameter<br>Cable diameter<br>Conduit material<br>Number of coils<br>Number of DPs<br>Conductor length in DP<br>Nominal current<br>Nominal field | 43.7 mm<br>39.7 mm<br>SS316LN<br>18<br>7 (5rDPs + 2sDPs)<br>760 m / rDP, 415 m /<br>sDP<br>68 kA<br>11.8 T |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|



Fig.3 WP insulation completio

## ITER TF コイル構造物 主構造体の製作進捗 Manufacturing progress of main structure for ITER TF Coil Structure

<u>櫻井 武尊</u>, 井口 将秀, 中平 昌隆, 藤原 英弘, 金森 信乃, 猪野 昌信, HONG Yunseok, 西野 雅夫, 田中 信彦, 花岡 敏成, 栗田 智久, 小泉 徳潔(量研機構)

SAKURAI Takeru, IGUCHI Masahide, NAKAHIRA Masataka, FUJIWARA Eiko, KANAMORI Shino, INO Masanobu, HONG Yunseok, NISHINO Masao, TANAKA Nobuhiko, HANAOKA Toshinari, KURITA Tomohisa, KOIZUMI Norikiyo (QST) E-mail: sakurai.takeru@qst.go.jp

#### 1. はじめに

量子科学技術研究開発機構(量研機構)は ITER 計画に おいてトロイダル磁場コイル(TF コイル)の調達を担当してい る。TF コイル構造物本体は D 型形状の超伝導巻線を格納す る高さ 16.5m、幅 9m、重量 200トンの超大型で複雑な構造物 である(Fig.1)。量研機構ではこれまで実機大の TF コイル構 造物の試作を実施し、製造計画を確立してきた。その計画に 基づき、2014年4月から実機TFコイル構造物製作を開始し、 2016年にTF コイル1号機用のAU 主構造体が完成した。本 稿ではその初号機製作をはじめとした TF コイル構造物製作 の進捗について報告する。

#### 2. TF コイル構造物の製作

TF コイル構造物本体はサブアセンブリと呼ばれる 4 体の 構造体から成り、トカマク中心側をインボード側と呼び、そのコ の字型容器を AU、蓋材を AP と呼ぶ。一方、装置外側をアウ トボード側と呼び、そのコの字型容器を BU、蓋材を BP と呼ぶ。 更に、AU, BU は外板と側板から成るベーシックセグメントとい うサブアセンブリを分割した単位で製作し、それらを溶接接合 して AU 又は BU 主構造体を製作する。主構造体を最終機械 加工し、TF コイルを冷却するための管取付けをすることでサ ブアセンブリが完成する。

#### 3. TFコイル構造物講の試作結果

TF コイル構造物には非常に厳しい公差が要求されている ため、溶接変形を考慮した余肉を材料に設け溶接後に機械 加工する必要がある。量研機構では、アウトボード側・インボ ード側それぞれの代表的なベーシックセグメントの試作を実 施し、溶接変形量の把握や変形量を最小化するための溶接 条件や溶接手順の最適化を行ってきた。

そして、主構造体製作に向けて、セグメント同士の溶接試 作も実施した[1]。インボード側のセグメント間溶接試作では、 曲線部であるA1 ベーシックセグメントと直線部 3m のA2 ベー シックセグメントを、変形量をモニタリングしながら施工するバ ランス溶接により溶接した。Fig.2 における P1 から P9 の点で 寸法を計測した結果、外板同士では溶接収縮が 6.3~6.8mm、 角変形が 2.7mm、側板同士では溶接収縮が 5.4~6.8mm、角 変形が-0.3~0.3mm となった。外板は若干の角変形をするも、 側板はほとんど角変形がなかった。これらの実規大の試作結 果より、適切な余肉量を検討し、製造計画を確立した。

#### 4. 実機 AU 主構造体の製作

AU 主構造体は、はじめに A1 ベーシックセグメントとA2 ベ ーシックセグメントを溶接し、それらに A3 ベーシックセグメント を溶接する。試作の結果より、外板が角変形することが予想さ れるため、予め変形を打ち消す逆歪を与えて開先合わせを 実施した。また、実機ではアタッチメントと呼ばれる他の機器と の取り合いやハンドリングするための金物が取り付けられる。

寸法計測は主にレザートラッカーを使用し、コイル容器の 基準点に対して、寸法管理値を設定し、変形量を管理した。 Fig.3に溶接が完了した AU 主構造体を示す。

#### 5. TF コイル構造物製作の進捗

現在、インボード側では6機のAU主構造体が完成し、7 機分のベーシックセグメントと8機のAP主構造体が製作中で ある。アウトボード側では1機のBU主構造体が完成し、3機 の主構造体と10機分のベーシックセグメント、7機のBP主構 造体が製作中である。主構造体は最終加工と冷却配管取付 け、検査等を経て、随時完成予定である。

#### 謝辞

TF コイル構造物の調達活動にご協力頂いている三菱重 工業(株)、現代重工業(株)、イーエナジー(株)、(株)東芝、 並びに関連会社の皆様に厚く御礼申し上げます。



Fig. 1 Sub-assemblies of TF Coil structure



Fig. 2 Welding Basic Segments trial (A1+A2)



Fig. 3 Overview of AU main structure

#### 参考文献

 T. Sakurai, et al.: Fusion Engineering and Design, Vol. 109-111 (2016) p.1592-1597

## ITER TF コイル巻線の熱処理変形の評価

### Evaluation of Winding Deformation Caused by Reaction Heat-treatment for ITER TF coil

<u>辺見 努</u>, 梶谷 秀樹, 松井 邦浩, 山根 実, 坂口 香織, 中本 美緒, 齊藤 徹, 安藤 真次, 高野 克敏, 小泉 徳潔(量研機構) <u>HEMMI Tsutomu</u>, KAJITANI Hideki, MATSUI Kunihiro, YAMANE Minoru, SAKAGUCHI Kaori, NAKAMOTO Mio,

SAITO Toru, ANDO Shinji, TAKANO Katsutoshi, KOIZUMI Norikiyo (QST)

E-mail: hemmi.tsutomu@qst.go.jp

#### 1. はじめに

ITER TF コイルでは、導体周りの絶縁材に他のターンから の電磁力が重畳されないようにするため、絶縁を施した導体 をラジアル・プレート(RP)と呼ばれる D 型の溝付きステンレス 板に挿入し、カバー・プレート(CP)を被せて導体を固定する 構造としている。Nb<sub>3</sub>Sn が脆性材料であることから、熱処理後 に 0.1%以上の曲げ歪を加えることができないため、D 型形状 に巻線し、熱処理した後、RP 溝に導体を挿入する。このため、 RP 溝幅と絶縁後の導体の隙間から、導体長として±0.02%(1 ターン約34mに対して±7mm)の高精度で巻線長を管理し、 熱処理により巻線形状が変形しても 0.1%以下の曲げ歪で RP 溝に挿入する必要がある。本発表では、韓国導体の熱処理 前後の導体長、形状の変化及び RP 溝に挿入するための曲 げ歪の評価結果について報告する。

#### 2. 熱処理による導体長の変化

熱処理による導体長の変化を評価するため、実機サイズ で D 型 1 ターンの韓国導体の熱処理を行った結果、導体長 の伸び量は 0.035%であった。この結果から、巻線を導体長で 0.035%だけ小さく巻き、熱処理後に正規の寸法になるように巻 線形状を決定した。Fig.1 に 3DP 分の熱処理による導体長の 伸びを示す。これまでの熱処理による導体長の伸びは平均値 ±3  $\sigma$  で 0.0367±0.0078%となっている。巻線における導体長 の誤差が-0.0013%±0.0098%であったため、巻線と熱処理の 誤差の合計は 0.0004%±0.0125%となり、目標として定めた ±0.02%を十分に満足している。

#### 3. 導体を RP 溝に挿入するための曲げ歪の評価

熱処理前後の巻線形状の変化を示すため、一例として韓 国導体で巻いた TF コイル 3 号機の DP1 P 面の設計形状と 測定結果の差異を 100 倍に拡大して図示した結果を Fig.2 に 示す。巻線は約 400 mm ピッチで RPを模擬した櫛に挿入され ており、熱処理前の巻線は櫛が設計位置で固定されている。 この測定結果より、設計形状と測定形状の差異は、熱処理前 後の最大値でそれぞれ、1.5mm 及び 13.5mm となっている。

熱処理後の導体を設計形状のRP溝に挿入するため、片持 ち梁を想定して順々に RP 溝に挿入する際の曲げ歪を計算し た結果を Fig.3 に示す。片持ち梁の長さが短すぎると曲げ歪が 大きくなるため、曲げる間隔は 500 mm 以上とし、0.1%以下の曲 げ歪で RP 溝に挿入できることを確認した。RP 溝と絶縁後の導 体の隙間は、インボード直線部、インボード曲線部、アウトボー ド部でそれぞれ、0.72 mm、2.22 mm、1.72 mm としているが、曲 げて位置を合わせた点以外の箇所もこの隙間の範囲内に収ま り、RP 溝に挿入可能であることを確認した。なお、曲げ歪は片 持ち梁の長さの 2 乗に反比例するため、曲げる間隔を長くする ことで、曲げ歪をさらに小さくすることができる。

#### 4. まとめ

韓国導体の熱処理前後の導体長、形状の変化及び RP 溝 に挿入するための曲げ歪について検討した。その結果、熱処 理後の導体長は目標とした±0.02%で管理できることを示した。 加えて、熱処理後の導体を 0.1%以下の曲げ歪で RP 溝に挿 入できることを確認した。



Fig.1 Conductor elongation caused by the reaction heattreatment for Korean conductors.



Fig.2 Winding deformation caused by the reaction heat-treatment for Korean conductor (P-side of DP1/TF03).



Fig.3 Bending strain to insert the heat-treated conductor into the RP groove for Korean conductor (P-side of DP1/TF03).

## ITER TF コイルにおける常温下でのジョイント抵抗検査手法の開発 New inspection method of joint resistance at room temperature for ITER TF Coil

梶谷 秀樹,辺見 努,山根 実,清水 辰也,宇野 康弘,中本 美緒,松井 邦浩,小泉 徳潔(量研機構) KAJITANI Hideki, HEMMI Tsutomu, YAMANE Minoru, SHIMIZU Tatsuya, UNO Yasuhiro, NAKAMOTO Mio, MATSUI Kunihiro, KOIZUMI Norikiyo (QST) E-mail: kajitani.hideki@qst.go.jp

#### 1. はじめに

ITER TFコイルのジョイント部 (Fig.1) では、ジョイント抵抗 (R<sub>1</sub>)を,数 nΩの低抵抗とする必要がある。しかし,実機 TF コイルのジョイント抵抗を低温にて測定することは, TF コイル は,高さ14m,幅9m,重さ300 トンの巨大なD型コイルであ ることから、それに合わせて巨大な装置が必要となるため、容 易ではない。そこで、著者らは、R/を常温にて簡易的に評価 することのできるジョイント部の非破壊検査手法を開発した。 本講演では、開発した検査手法の詳細について報告する。

#### 2. 検査手法のコンセプト

R<sub>1</sub>の大きさは、主に撚線とジョイントボックス銅スリーブ間 の接触抵抗(R<sub>e</sub>)とジョイント部同士を接合する半田接合面の 抵抗(Rsol)によって決まる。このうち、Rsol については、製造過 程における目視検査によって、品質を確認することができる が, R。については, それが難しい。そこで本研究では, R。を評 価することに着目した。

R<sub>c</sub>は, 撚線と銅スリーブ間の電流染込長(CPL)に影響を 与える。そのため、著者らは、製造したジョイント部の品質に 問題がない場合(つまり, R. が十分低い場合)では, CPL に再 現性があり,一方で,何かしらの異常や欠陥が存在する場合 では、CPL に変化が生じるのではないかと考えた。

#### 3. 検査システム

このような現象を観測するため、 銅スリーブの電圧分布を 測定することのできる測定システムを開発した(Fig.2)。

本測定では, Fig.2に示すように, 銅スリーブの撚線圧縮部 全域に電圧タップピンを5 mm 間隔で配置した。末端のタップ を基準電位 レ。として, 常温にて銅スリーブ両端部に 20 A を 印加し、ナノボルトメータを用いて、 Voから各タップ間の電圧 測定を行った。また、ここでは、検査感度を上げるために、次 式に示す銅スリーブ長手方向座標 Z に対する局所的な電圧 変化率にも着目した。

 $dV = V_n - V_{n+1}$ (1)dz $\Delta z$ 

ここに, Δzはタップ間距離, V<sub>n</sub>-V<sub>n+1</sub> は隣り合うタップ間の電 圧を表す。

#### 4. 検査結果

ここでは、実機 TF コイルジョイント部での7 測定に加えて、 NIFS ジョイントサンプル[1]についても測定を行った。これは, R<sub>1</sub>が予め確認できる NIFS サンプルの結果と比較することで, 実機ジョイント部の健全性を確認できるためである。また、通 電試験後の NIFS サンプルを解体し, この解体サンプルにつ いても測定を行った。

V₀を基準とした電圧測定結果を Fig.3 に示す。このように, 実機ジョイント部の測定では、全ての測定において再現性を 確認でき, また, NIFS サンプルのそれとも一致しているため, 健全であることが確認できる。

一方, 解体サンプルの測定結果は, これらから大きく逸脱 している。これは、解体サンプルでは、 撚線内部の状態は電 磁力によって変化しており、 撚線内部への CPL が実機ジョイ ント部のそれとは異なるためである。このように、本検査法で は, 撚線内部の変化も感度良く検知することができる。

また、これらの電圧降下を dV/dz に変換した結果を Fig.4 に示す。このように, dV/dz に変換することによって, Fig.3 で は見え難かった z=0~0.1 m 付近の差異も明確に観測できる ようになる。以上より、本検査法を用いれば、ジョイント部の状 態を感度良く検知できるため, Reの品質を検査することが可能 となる。

#### 参考文献

1. H. Kajitani, et al.: Abstracts of CSSJ Conference, Vol. 88 (2013) p.47



Fig.1 ITER TF joint.



Fig.2 Schematic view of measurement system.







— 34 —

## ITER-TF接続サンプル試験における電位分布の考察 Consideration of voltage distribution in conductor surface of ITER-TF joint samples.

<u>今川 信作</u>, 尾花 哲浩, 高田 卓, 濱口 真司, 力石 浩孝, 高畑 一也 (NIFS); 梶谷 秀樹, 松井 邦浩, 辺見 努, 小泉 徳潔 (QST) <u>IMAGAWA Shinsaku</u>, OBANA Tetsuhiro, TAKADA Suguru, HAMAGUCHI Shinji, CHIKARAISHI Hirotaka,

TAKAHATA Kazuya (NIFS); KAJITANI Hideki, MATSUI Kunihiro, HEMMI Tsutomu, KOIZUMI Norikiyo (QST)

E-mail: imagawa@LHD.nifs.ac.jp

### 1. はじめに

ITER-TF 接続サンプルの通電試験を核融合科学研究所の 大型導体試験装置を用いて実施している[1]。これまでに5本の接続サンプルを試験し、接続抵抗が「外部磁場2T以上で 3nQ以下」の要求値を満足することを確認した。インダクタンス と渦電流の影響を排除するため、電流値1,15,30,45,60,68kA で3分間保持して電位差を測定し、各位置6点の平均電位差 の電流値依存性(勾配)から抵抗値を求める方法により、nQレ ベルの抵抗測定を可能としている。電圧端子間には0.01mV 程度の電位分布が観測されており、接続サンプルに共通するものと固有のものがあり、その要因について考察する。

### 2. 試験装置と試験サンプル

9Tスプリットコイルと100 kA 電流リードを有する大型導体試 験装置への ITER-TF 接続サンプルの取付図を図1に示す。ス プリットコイルは浸漬冷却であるため,強制冷却の接続サンプ ルは容器内に収納され、その周囲はガスヘリウム雰囲気である。 サンプル最下端から超臨界圧ヘリウムが供給され、往復導体の 各々の最上部より排出される。供給管に巻き付けたヒータの制 御により、4.4Kと6Kの2通りで接続抵抗を測定している。

接続サンプルは,長さ1.5 mのケーブル・イン・コンジット(CIC) 導体2本の下部が ITER-TF 実機と同じ接続部形状に加工され, 銅スリーブ同士が半田接合されている。超伝導線と銅スリーブの 接続長は 440 mm で,最終撚りピッチ長に相当する。上部は, 100 kA 電流リードに接続される銅ブスバーと低抵抗で接続する ため,下部と同様の接続部形状に加工され,銅ブスバーとは インジウムを挟んで接続されている。中央の通常部の導体長と して 300 mm を確保するため,上部接続部の超伝導線と銅スリ ーブの接続長は試験装置の寸法制限から 325 mm に短縮され ている。電圧端子は,300 mm の通常部の3箇所の位置のコン ジット表面に6点ずつ取り付けられており,各位置における往復 導体間の電位差から下部接続部の接続抵抗を求めている。

## 3. 電圧測定結果

下部接続部での電圧降下の代表的な例を図2に示し、その時の導体通常部の長手方向の電位差を図3に示す。測定ノイズ除去のため10 msサンプリングのデータの100点分を平均した値を示している。図2において、6組の電圧端子間の偏差は0.01 mV以下であり、接続抵抗による電圧降下と比べると小さい値に収まっている。この値は図3の通常部の長手方向の電位差と同等であり、矛盾しない結果が得られている。電流値が増えても偏差が拡大しない点は全サンプルに共通する特徴である。

通常部の長手方向電位差は、CIC導体内の超伝導素線間 の電位差を表していると考えられ、この電位差は、主に上部接 続部と下部接続部での接続抵抗の偏差によって生じると考えて いる。しかし、図3から分かるように、15 kA以上における電位差 の変化は全ての電圧端子において電流値にほぼ比例している が、1 kAから15 kAに電流を増やす間に電圧端子によっては電 位差が大きく変化しており、その原因を考察するための解析モ デルを検討している。

### 参考文献

H. Kajitani et al.: *IEEE Trans. Appl. Supercond.*, Vol. 25 (June 2015) Art. ID. 6965582.



Fig. 1. Set up of an ITER-TF joint sample in the 9 T test facility.



Fig. 2. Voltage drops at the position A of the 3rd joint sample at the external field of -3.7 T at 4.4 K.



Fig. 3. Longitudinal voltage drops in R-leg of the 3rd joint sample at the external field of -3.7 T at 4.4 K.

The effect of twist pitch elongation on current sharing temperature of ITER Central Solenoid conductor

<u>諏訪 友音</u>, 高橋 良和, 堤 史明, 三木 孝史, 辺見 努, 布谷 嘉彦, 小泉 徳潔(量研機構) <u>SUWA Tomone</u>, TAKAHASHI Yoshikazu, TSUTSUMI Fumiaki, MIKI Takashi, HEMMI Tsutomu, NUNOYA Yoshihiko, KOIZUMI Norikiyo (QST) E-mail: suwa.tomone@qst.go.jp

#### 1. 概要

量子科学技術研究開発機構(QST)は、ITER 調達活動に おいて中心ソレノイド(CS)導体の調達を行っており、Nb3Sn 素 線を用いた 613 m と 918 m のケーブルインコンジット導体 (CICC)を合計 49 本製作する。2017 年 4 月までに CS 導体は 42 本完成しており、調達の約 86%が完了している。これまで に製作した実機導体から 4 m サンプルを採取し、SULTAN 試 験によって性能評価を行っている。また、導体製作中に撚線 のツイストピッチが伸びるため[1, 2]、ツイストピッチを伸ばした 導体の試験を行い、ツイストピッチが導体性能に与える影響 を調べた。

#### 2. CS 導体のツイストピッチ変化

ITER CS 導体は、576本の Nb3Sn 素線、288本の Cu 素線 を用いた超伝導撚線およびステンレス鋼ジャケットで構成され る CICC である。超伝導撚線には、JASTEC および古河電工 によって製作されたブロンズ法 Nb3Sn 素線と Kiswire Advanced Technology(KAT)によって製作された内部拡散法 Nb3Sn素線が用いられる。 撚線は5 次ツイストピッチを450 mm として製作されるが、撚線をジャケットに引き込む際撚線先端 の5次ツイストピッチが450mmから最大590mmまで伸びて しまうことが確認されている。これは、引き込み時に最大で 30kN 程度の力を加えることと、撚線に対して回転拘束ができ ないことが原因であると考えられる。そこで、引張り試験機を 用いて短尺撚線のツイストピッチを意図的に伸ばして、ツイス トピッチを伸ばした短尺導体を製作した。その導体の性能評 価試験を行い、ツイストピッチが分流開始温度(Tcs)に与える影 響を調べ、導体製作時におけるツイストピッチの上限値(Ls,uL) を決めた。

製作した実機導体とツイストピッチを伸ばした導体の性能 評価試験は、スイス・プラズマ・センター(SPC)の SULTAN 試 験装置[3]を用いて行った。SULTAN 試験では、450 mm の範 囲に導体軸方向に対して垂直に磁場を印加し、10.85 T にお ける 45.1kA 通電時の  $T_{cs}$ を測定した。また、CS 運転を模擬 するため、10,000 回以上の電磁力サイクルを与え導体の健全 性を調べた。

#### 3. 試験結果

Fig.1に、引張り試験機によって撚線に引張り力を印加した ときの5 次ツイストピッチの変化を示す。撚線製作作直後のツ イストピッチは450 mm だが、引張り力0 kN においてツイスト ピッチが約500 mm になっているのは、撚線からサンプルを切 断すると拘束がなくなり撚り戻しが発生するためである。各社 の撚線のツイストピッチは引張り力に対して増加することがわ かり、引き込み力と同じ30kN を加えればツイストピッチ 600 mm 以上の導体が製作できることがわかった。

Fig.2 に、通常通りに製作された導体から採取したサンプ ルと引張り試験機によってツイストピッチを伸ばしたサンプル の Tesの測定結果を示す。Fig.2 より、いずれの導体の Tesも仕 様値(6.5 K)以上であることが確認できた。従って、ブロンズ法 素線と内部拡散法素線においてそれぞれのツイストピッチが 586 mm、543 mm まで伸びても Tesへの影響は無いことがわか



Fig.1 Twist pitch was elongation by tensile test.



Fig.2 Current sharing temperature ( $T_{cs}$ ) against electromagnetic loading cycles. Solid symbols show  $T_{cs}$  of samples with elongated twist pitch by tensile test.

った。これは、5次ツイストピッチが伸びても1次から4次ツイ ストピッチが変化しないため、電磁力に対する撚線の剛性も 変化しないことが原因と考えられる。

#### 4. まとめ

撚線をジャケットに引き込む時に撚線のツイストピッチが伸 びることは回避できないため、T<sub>cs</sub>に与えるツイストピッチの影 響を調べた。ブロンズ法素線と内部拡散法素線を用いた撚線 のツイストピッチを意図的に 586 mm、543 mm まで伸ばしても 通常通り製作した導体の T<sub>cs</sub>との差はないことがわかった。従 って、586 mm、543 mm 程度までツイストピッチが伸びても、T<sub>cs</sub> には影響を与えないと言える

#### 参考文献

- Y. Nabara, et al.: IEEE Trans. Appl. Supercond., Vol. 25, No 3, June 2015 4200305.
- T. Suwa, et al.: IEEE Trans. Appl. Supercond., Vol. 26, No 4, June 2016, 4803505.
- P. Bruzzone, et al.: IEEE Trans. Appl. Supercond., Vol. 19, No. 3, June 2009, 1508.

第94回 2017年度春季低温工学·超電導学会

— 36 —

## 種々の Cu 合金母材を用いた内部拡散法 Nb<sub>3</sub>Sn 線材の研究 Internal-Sn processed Nb<sub>3</sub>Sn wires prepared from different Cu alloy matrix

伴野信哉, 二森茂樹(物材機構);宮本泰男(東海大学);<u>太刀川恭治</u>(物材機構、東海大学) BANNO Nobuya, NIMORI Sigeki (NIMS); MIYAMOTO Yasuo (Tokai Univ.); <u>TACHIKAWA Kyoji</u> (NIMS, Tokai Univ.) E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp

#### 1. 緒言

内部拡散法では、任意のCu母材を用いることにより線材の 機械的特性や超電導特性を高めうる可能性がある。著者らは この観点からCu-15wt%Zn合金(Gold Brass)を用いた線材や [1]、Cu-5wt%Ge合金を用いた線材について報告した[2]。本 研究では、新たにCu-10wt%Ga合金を母材にした線材を作製 し、これまでの結果と比較、検討した。

#### 2. 実験方法

Cu-10wt%Ga 合金を溶製し、これに Nb 芯を複合した要素と、 Cu に Sn-1.6wt%Ti 芯を複合した要素を Nb シースに組み込ん で 0.8mm  $\Phi$ の 36 芯線に加工した後、1 気圧の Ar 雰囲気中 で熱処理を行った。熱処理後の線材断面を EDX により観察 し、また、生成された Nb<sub>3</sub>Sn 層の組成を EPMA 分析により求 めた。さらに試料の  $T_c$ を SQUID 磁力計により測定、比較した。

#### 3. 実験結果と考察

10Ga 母材は 15Zn 母材に比べると加工硬化がやや著しかったが、線材に加工することが出来た。なお、500℃における Cu に対する Zn、Ge、Ga の固溶限はそれぞれ約 37、12、 20wt%である。Fig.1 に 10Ga 母材線を 700℃ x200h の熱処理 後の Nb 芯周りの EDX mapping を示した。厚さ約 12 $\mu$ m の Nb<sub>3</sub>Sn 層がほぼ均一に生成している。図 (b) の Ga は母材から Nb<sub>3</sub>Sn 層の周りに拡散して Nb<sub>3</sub>Sn 層に少量均一に固溶した後、 Nb 芯に到達して薄いリングを形成する。このように Ga は母材 から Nb<sub>3</sub>Sn 層を通過して、残留 Nb 芯の周りに集まる。

Fig.2 に 750℃ x 100h 熱処理後の Nb<sub>3</sub>Sn 層の Sn、Ga、Ti、 Cu の EDX 線分析図を示した。Nb<sub>3</sub>Sn 層の厚さは Fig.1 より若 干増加し、約 15 µ mとなる。なお、縦軸の強度目盛りは各元 素により異なる任意目盛りである。各元素とも Nb<sub>3</sub>Sn 層内の分 布はほぼ均一である。Ga には Fig.1 にみられるリングに対応 して Nb 芯近くにピークの形成が認められる。

Table 1 に 700<sup>°</sup>Cx200h 熱処理後に生成される Nb<sub>3</sub>Sn 層の 組成を前報の Cu 母材線(Cu)、Cu-15Zn 母材線(15Zn)及び Cu-5wt%Ge 母材線(5Ge)の値と比較して示した。 全試料につ いて Ti は約 1wt%含まれ, Ge、Ga 量は 2wt%前後である。Cu は Cu 母材線でやや多く、10Ga 母材線でやや少ない。Sn 量 は Cu 母材線と15Zn 母材線で同程度であるが、 5Ge 母材線 で少なく、10Ga 母材線で多くなる。

Fig.3 には各試料の onset 近くの  $T_c$ 遷移を比較して示した。 Cu 母材線と 15Zn 母材線はほぼ同じ  $T_c$ を示したが、15Zn 母 材線の方が遷移がやや鋭い。これらに比較して 5Ge 母材線 は  $T_c$ が低く、10Ga 母材線は高い。5Ge 母材線の  $T_c$ は 750℃ の熱処理で高められ、700℃熱処理の Cu 母材線及び 15Zn 母材線の値より高くなる。10Ga 母材線はこれらの中で最も高 い遷移を示す。 $T_c$ は Table 1 に示した Nb<sub>3</sub>Sn 層の Sn 量と関 係し、Sn 量の多いほど高くなる。

これまでに用いた種々の合金母材を比較すると、15Zn 母 材は加工性が最もよく、Sn の拡散を促進し、Zn-Ti 化合物の 生成もなく、Nb<sub>3</sub>Sn 生成後も Zn はそのまま母材に残るので、 標準的な母材といえる。5Ge 母材は Nb<sub>3</sub>Sn 層の周りに Ge リン グを形成するのが特徴で、Sn の Nb 芯への拡散を遅らせるが、 Nb<sub>3</sub>Sn 芯を包んで機械的に補強し、また交流特性にも有利で あろう。今回の 10Ga 母材線において残留 Nb 芯の周りに Ga リングが形成されるのは、Nb-Ga 中間層が生成されやすいた めと考えられる。10Ga 線材は Nb<sub>3</sub>Sn 中の Sn 濃度が多く、T<sub>c</sub> が高いのが特徴である。本報告の製法は今後も改良、発展の 可能性があると考えられる。

[1] 太刀川恭治、伴野信哉、宮本泰男,日本金属学会誌 80 巻 7 号(2016)480-486, [2] N. Banno, Y. Miyamoto, K. Tachikawa: Abstracts of CSJ Conference, Vol. 93 (2016) p.33



Fig.1 EDX mapping of Nb and Ga in Nb<sub>3</sub>Sn filament reacted at 700°C for 200h.



Fig.2 EDX line scanning chart for Sn, Ga, Ti and Cu across the Nb<sub>3</sub>Sn layer reacted at 750°C for 100h.

| Table1   | Composition    | of Nb <sub>3</sub> Sn | layer | in | different | matrix | wires |
|----------|----------------|-----------------------|-------|----|-----------|--------|-------|
| heat tre | eated at 700°C | C for 200h            |       |    |           |        |       |

| Matrix | Nb    | Sn    | Ge   | Ga   | Cu   | Ti   |
|--------|-------|-------|------|------|------|------|
| Cu     | 70.60 | 22.49 | _    | _    | 5.62 | 1.29 |
| 15Zn   | 71.78 | 23.28 | -    | —    | 3.83 | 1.11 |
| 5Ge    | 71.80 | 21.06 | 1.93 | _    | 4.12 | 1.09 |
| 10Ga   | 68.02 | 25.88 | _    | 2.10 | 3.13 | 0.87 |



Fig.3  $T_c$  transition for quoted wires measured by SQUID.

## Brass 法による極細多芯 Nb<sub>3</sub>Sn 線の作製と組織 Multifilamentary Nb<sub>3</sub>Sn wires fabricated through Brass method and their microstructures

<u>伴野信哉</u>(物材機構); 宮本泰男(東海大学); 太刀川恭治(物材機構, 東海大学) <u>BANNO Nobuya</u> (NIMS); MIYAMOTO Yasuo (Tokai Univ.); TACHIKAWA Kyoji (NIMS, Tokai Univ.) E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp

#### 1. 緒言

内部拡散法 Nb<sub>3</sub>Sn 線材において、Cu 母材に Zn を添加した合金マトリクスを用いると、Sn 拡散が促進され、母材における残留 Sn 濃度の低下とともに、厚い Nb<sub>3</sub>Sn 層の形成に繋がることがこれまでの実験結果から明らかとなってきた。著者らはさらに、Sn 拡散のさらなる促進を目的に Nb フィラメントの極細化を図り、構成元素の拡散挙動を調べてきた [1]。加えて、*L*向上には Nb 占積率の向上が不可欠となる。本研究では、デザインを見直し、熱処理時の Ti 化合物の生成を抑制しつつ、Nb 占積率の増加を図った。これにより、16 T では 600 A/mm<sup>2</sup>、12 T では 1400 A/mm<sup>2</sup>を超えるマトリクス *L*が得られた。これらの値はブロンズ法線材の特性を凌駕する。しかし、断面設計、熱処理条件はまだ充分に最適化されておらず、本線材の潜在的なポテンシャルが期待できる。

#### 2. 実験方法

基本的な試料の作製手順は次のとおりである。まず Gold Brass (Cu-15wt%Zn 合金)を母材とした Nb 多芯線を作製し、 併せて Cu を母材とした Sn-1.6wt%Ti 単芯線を準備する。ここ で、サブバンドルの構成要素として Nb 多芯線と Sn-Ti 単芯線 とに分けるのは、Nb 多芯線に対して中間焼鈍を可能とし、良 好な線材加工性を確保するためである。次にそれぞれを設計 に合わせて所定の本数ずつ組み合わせフィラメント領域を構 成したのち、バリアとなる Nb シース、Cu シースに組み込む。 のち、伸線加工を経て極細多芯前駆体線とする。本研究では、 Nb 芯数、Nb フィラメント径、Nb 占積率の異なる3 種類の極細 多芯前駆体線材 (MF817、MF4477、MF684)を準備した。線 材諸元を Table 1 に、また各線の断面を Fig. 1 に示す。

各線材は 550℃×50~100 h、650℃×100 h の予備加熱を したのち 700℃×200 h の熱処理を施した。熱処理はいずれも 1 気圧の Ar 雰囲気中で行った。熱処理後の線材断面を FESEM、EPMA、EDX により観察し、マトリクスならびに生成さ れた Nb<sub>3</sub>Sn 層の組成分析を行った。また磁場中の L測定を行 い、フィラメント領域面積で除して Lを求めた(マトリクス L)。

#### 3. 実験結果と考察

MF817 線は、フィラメント領域の Nb 占積率が低く、マトリクス比が大きかったため、Nb フィラメント間に十分な Sn-Ti の拡散経路が確保された。Sn、Ti は外側まで十分拡散し、Nb 芯は ほぼ Nb<sub>3</sub>Sn 層へと変化し、Nb 芯極細化の効果が確認されて いる。しかし、外側 Nb フィラメントには若干未反応の Nb 芯が見られており、改善の余地は残されている [1]。

次の MF4477 線については、マトリクス比を極力低減して、 Nb 占積率を 2 倍近く高め、加えて Nb 芯径をさらに縮径化す ることで、J。向上を追求する設計とした。本線材を同様に 550℃、650℃、700℃と熱処理を行ったところ、650℃を超えた 辺りから、内側のフィラメントサブバンドル内の Nb 芯が Nb<sub>3</sub>Sn 相へ変化するのに伴って、Nb<sub>3</sub>Sn層が膨張し、フィラメントサブ バンドル間で Ti 化合物による拡散経路の詰まりが生じること が確認された。これには Sn 芯中の Ti 量が多すぎたことも考え られる。Fig. 2 に示すように、Ti 化合物の詰まりは 700℃熱処 理後も解消されることはなく、Sn 拡散がブロックされ、外側 Nb フィラメントでは Nb<sub>3</sub>Sn 層の形成が極めて不十分となった。

これらの結果をもとに、MF684 ではフィラメントサブバンドル 間の Sn、Ti 経路を確保するよう Nb 芯数、Nb フィラメント径、 マトリクス比を再デザインした。700℃で熱処理した試料につ いて組織確認したところ、Ti 化合物の詰まりは確認されなかった。サブバンドル内の Nb フィラメント間は非常に狭く、サブバ ンドルは Nb<sub>3</sub>Sn 層としてほぼ一体化する。サブバンドル内で は Ti は Nb<sub>3</sub>Sn 層内を Sn とともに粒界拡散していくものと考え られる。この様に線材設計の改良により大幅に *J*cが向上した。 [1] N. Banno, Y. Miyamoto, K. Tachikawa, IEEE TAS **27** (2017) 60000205.

Table1 Specifications of multifilamentary-type Brass-method Nb<sub>3</sub>Sn wires.

|                                      | MF817 | MF4477 | MF684 |
|--------------------------------------|-------|--------|-------|
| Wire diameter (mm)                   | 0.6   | 0.6    | 0.6   |
| No. of filaments                     | 19×43 | 121×37 | 19×36 |
| Filament diameter (µm)               | 5.94  | 3.5    | 8.18  |
| Area fraction in filament region (%) |       |        |       |
| Matrix                               | 63.5  | 35     | 43.2  |
| Nb cores                             | 23.5  | 44.5   | 36.3  |
| Sn-Ti cores                          | 13.0  | 20.5   | 20.4  |



Fig.1 Cross-sections of developed precursor wires, MF817, MF4477 and MF684 from left.



Fig.2 EPMA mapping (Ti, Sn) on the sub-bundle area of MF4477 wire after the heat treatment at 700°C for 100 h.



Fig.3  $J_c$ -B characteristics of all samples.  $J_c$  of MF684 is about 600 A/mm<sup>2</sup>@16 T and 1400 A/mm<sup>2</sup>@12 T, which are far beyond those of conventional bronze-route Nb<sub>3</sub>Sn wires.

## Cu-Sn-Zn 三元系ブロンズを用いた Nb<sub>3</sub>Sn 線材の超伝導特性における 一方向引張ひずみ効果

Unidirectional tensile strain effect on superconducting property of Nb<sub>3</sub>Sn multifilamentay wires using various Cu-Sn-Zn ternary bronze matrices

<u>菱沼 良光</u>(核融合研);小黒 英俊(東海大);谷口 博康((株)大阪合金工業所);菊池 章弘(物質・材料研究機構) <u>HISHINUMA Yoshimitsu</u> (NIFS); OGURO Hidetoshi (Tokai Uni.); TANIGUCHI Hiroyasu (OAW); and KIKUCHI Akihiro (NIMS) E-mail:hishinuma.yoshimitsu@nifs.ac.jp

#### 1. はじめに

Zn を固溶した高 Sn 濃度 Cu-Sn-Zn 合金母材を用いた Nb<sub>3</sub>Sn 極細多芯線材の試作に成功し、Zn による Nb<sub>3</sub>Sn 相の 生成促進効果と均質な Zn の母材中での残存を報告している [1]。そして、残存した Zn が Nb<sub>3</sub>Sn 相生成後の母材の固溶強 化に寄与する可能性があり、Nb<sub>3</sub>Sn 線材の高強度化への新 しい試みとなると考えられる。そこで、Zn を固溶した Cu-Sn-Zn 合金母材を用いた Nb<sub>3</sub>Sn 極細多芯線材の機械特 性を明らかにする目的で、線材に一方向引張ひずみを印加し た時の臨界磁場特性の変化について評価した。

#### 2. 実験方法

Table.1 に示すような種々の Sn 量と Zn 量の Cu-Sn-Zn 母材を用いたブロンズ法 Nb<sub>3</sub>Sn 極細多芯線材(線径: 0.9mm)を用意し、550 ℃-100 h+650 ℃-100h の二段熱処理 を行った。その際、Ar 雰囲気とした。これは、熱処理過程での Zn の蒸発を抑制する目的である。

臨界磁場特性における引張ひずみ効果は、超伝導線材の 機械特性の評価に実績のある東北大金研の協力のもと、 Fig.1 に示す強磁場下引張ひずみ印加装置を用いて評価した

Table. 1 Nominal composition of the Cu-Sn-Zn bronze matrices for the bronze processed Nb<sub>3</sub>Sn multifilamentary wires

| Item (code) | Matrix (mass%)      |
|-------------|---------------------|
| Sample-A    | Cu-10Sn-10Zn-0.3Ti  |
| Sample-B    | Cu-12Sn-6Zn         |
| Sample-C    | Cu-12Sn-6Zn-0.3Ti   |
| Sample-D    | Cu-13.5Sn-4Zn-0.3Ti |



Fig. 1 Sample setting configuration of the  $H_{c2}$  measurement with unidirectional tensile deformation

[2]。線材長は 15mm とし、線材両端を Cu 電極に半田付けした。そして、電圧端子間距離を 10mm とした。そして、一方の 電極が長手方向にスライドすることで線材に一方向の引張変 形が加えられる。引張変形に伴うひずみ量は、線材を上下に 挟むように接着したひずみゲージの出力の平均値とした。試 料をセットしたプローブを 18T 超伝導マグネットに挿入した。

電気抵抗率と外部磁場の関係(**R-B** 曲線)は、試料を所定 のひずみを加えた後に、100mA の電流を通電しながら外部 磁場を掃引した。臨界磁場(*H*<sub>c2</sub>)は、**R-B** 曲線のオフセットと した。

#### 3. 実験結果

Fig.2 に、Sample-D 線材における一方向引張変形前後の R-B 曲線の比較を示す。温度は10Kとした。変形前の臨界磁 場は、15.444 T と見積もられた。一方、0.1%の引張ひずみを 印加すると、15.667 T となり、特性が向上した。これは、臨界 電流特性の挙動と同様に、線材内部の残留ひずみが、引張 変形に伴って緩和されるためであると考えられる。



Fig. 2 R-B curves under 10 K of the sample-D wire before and after unidirectional tensile deformation

- Y. Hishinuma et al.: J. Cryo. Super. Soc. Jpn., 50, (2014), p.194-201.
- H. Oguro et.al: IEEE Trans. Appl. Supercond, 20, (2010), p.1424-p.1427

本研究は NIFS 核融合工学プロジェクト(UFFF036)、NIFS 一般共同研究(NIFS14KECF013)、及び科研費(基盤 (B)16H04621)の支援を受けた。そして、引張ひずみ印加下 での測定は、東北大学金研共同利用研究(15H0024)に採択 されて実施された。

## 超高スズ濃度ブロンズ法 Nb₃Sn 極細多芯線材の研究開発 Research and Development of Super-High-Tin Content Nb₃Sn Maltifilamentary Wires

<u>菊池 章弘</u> (NIMS); 谷口 博康, 水田 泰次, 水田 泰成 (大阪合金); 飯嶋 安男 (NIMS) <u>KIKUCHI Akihiro</u> (NIMS); TANIGUCHI Hiroyasu, MIZUTA Taiji, MIZUTA Yasunari (OAW); IIJIMA Yasuo (NIMS) E-mail: KIKUCHI.Akihiro@nims.go.jp

#### 1. はじめに

ブロンズ法 Nb<sub>3</sub>Sn 線材の高性能化は、ブロンズ原料の高 Sn 濃度化により達成されてきた。我々は、ブロンズ法 Nb<sub>3</sub>Sn 線材の一層の特性向上を図るために、新しい超高 Sn 濃度 ブロンズ合金の開発を精力的に推進している。α相の Sn 固 溶限をはるかに超えた過去最高の Sn 濃度となる Cu-18.5mass%Sn ブロンズでも、Ti 添加量を調整することで優れ た冷間加工性が発現する。今回、新しい高 Sn 濃度ブロンズ を原料に極細多芯線の試作を行った。

#### 2. 高 Sn 濃度ブロンズ原料の作製

新しい高 Sn 濃度ブロンズ合金は、黒鉛坩堝を直接水冷し ながら一方向凝固させる「水田式溶製法」により溶製した。 溶製塊は、量産サイズ(~ $\phi$ 220)よりも小さい $\phi$ 80の実験サ イズで、溶製後は組織の均質化のために 600°Cで 200hの均 質化熱処理を大気中で実施した。組成は Cu-17.5mass%S-.0mass%Ti及びCu-18.5mass%Sn-1.6mass%Tiと、 比較のための通常の Cu-16mass%Sn-0.3mass%Ti組成のブ ロンズも作製した。高 Sn 濃度ブロンズは適当な熱間鍛錬を 実施して組織制御を行った。

#### 3. 熱間押出加工

Fig.1 は 19 芯サブマルチビレットの外観写真である。外径 が約 50mm で内径が約 44.5mm の無酸素銅管に、外径 44mm の 19 芯ブロンズを挿入し真空中で電子ビーム溶接し て CIP を行った。これを熱間押出して、外径 15mm に縮径し た。Fig. 2 は熱間押出後の 19 芯サブマルチの外観である。 熱間押出は全く問題なく完了できた。押出比は 11.1 である。 さらに押出後の 19 芯サブマルチを六角形状に伸線加工し、 それを束ねて Nb 芯が 1615 本となるようなマルチビレットを 作製し、サブマルチと同様な熱間押出を実施した。マルチビ レットの押出も問題なく実施できた。



Fig. 1 19 filament sub-multi billet using new high tin bronze alloy.

| 押出先端 | ID-33 : Φ15, L880 |  |
|------|-------------------|--|
|      | ID-44 : Φ15, L855 |  |
|      |                   |  |

Fig. 2 19 filament sub-multi rod after hot extrusion. Extrusion ratio is 11.1.

#### 4. 極細多芯線材の冷間伸線加工

熱間押出後のマルチ材は、冷間で伸線加工と中間焼鈍を 行って、外径 1.0mm まで縮径した。さらに加工性を確認する ために、一部は外径 0.3mm まで伸線加工を行った。Fig.3 は 18.5mass%Sn-1.6mass%Ti 組成の高 Sn 濃度ブロンズ合金を 使用した極細多芯線材の断面で、外径は 0.3 mm である。き れいな多芯構造で、断面の崩れはみられない。さらに Fig. 3 の一部を拡大した写真が Fig. 4 である。フィラメント径は約 5 ミクロン。ブロンズマトリックスにはサブミクロン径の Ti 化合物 粒子が観察される。



Fig. 3 1615 filaments bronze-processed wire using Cu-18.5mass%Sn-1.6mass%Ti bronze alloy. The wire diameter is 0.3 mm.



Fig. 4 Enlarged image of Fig. 3. The Nb filament diameter is about 5 microns.

## Ta-Ni 合金をフィラメント間母材とした Nb<sub>3</sub>AI 線材の諸特性 Characteristics of Nb<sub>3</sub>AI wires with interfilament matrix of Ta-Ni alloy

<u>菊池 章弘</u>, 飯嶋 安男, 平田 和人 (NIMS); 土屋 清澄 (KEK); 内田 聖, 高尾 智明 (上智大) <u>KIKUCHI Akihiro</u>, IIJIMA Yasuo, HIRATA Kazuto (NIMS); TSUCHIYA Kiyosumi (KEK); UCHIDA MIO, TAKAO Tomoaki (Sophia Univ.) E-mail: KIKUCHI.Akihiro@nims.go.jp

#### 1. はじめに

フィラメント間母材を Ta-Ni 合金とする新しいデザイン Nb<sub>3</sub>Al 線材の研究開発を進めている。ジェリーロールシングル ビレットの再外皮は、これまで Nb 箔あるいは Ta 箔のみを複 数回巻いて拡散バリア(フィラメント間母材)としていたが、Nb 箔あるいは Ta 箔とともに加工性が良好な Ni 箔も同時に巻い て急熱急冷処理時に反応させて合金化する。

#### 2. 前駆体線材

Nb/Alジェリーロール積層体の外周に通常は Ta 箔のみを 巻き込んで拡散バリアとするが、今回のデザインは、Ta 箔(厚 さ100 ミクロン)の間に Ni 箔(厚さ10 ミクロン)を巻き込んだ構 造にしている (Fig. 1)。冷間で静水圧押出加工を行い、その 後に伸線加工して六角に成型したジェリーロールシングル材 を78本束ねてマルチビレットを作製し、再び冷間で静水圧押 出加工と伸線加工により、外径1.0 mm とした (Fig. 2)。



Fig. 1 Jelly-Rolled single precursor with pure tantalum and pure nickel lamination barrier.



Fig. 2 78 filaments precursor wire with pure tantalum and pure nickel lamination barrier.

#### 3. 急熱急冷処理

Fig.3 はバリア部分を拡大した EPMA による Ni のマッピン グ図である。急熱急冷処理前の Ni はバリア部に細かく分布し ており機械的に混合された様相を呈しているが、急熱急冷処 理の高温熱処理で隣接する Ta と反応して Ni が濃化し、バリ アブは Ni が網目状に分布する組織となっている。



Fig. 3 EPMA mapping of Ni for filament barrier region (a) before and (b) after RHQ treatment.

#### 4. 引張試験(室温)の結果

Fig. 4は、急熱急冷処理後の線材(外径1.0mm)の室温に おける引張試験の結果である。バリア部が通常の純Nbの線材、 Nb-Niの線材、Nb-Alの線材、及びTa-Niの線材を比較した。 Ta-Niバリアの線材の引張強度は1GPaが得られ、通常のNb バリア線材より20%ほど高強度である。



Fig. 4 Tensile test of 78 Nb-Al solid solution filaments wire with deferent interfilament matrix.

## 5 kW 級ビスマス系高温超伝導誘導同期モータのガス冷媒冷却下回転特性 に関する実験的検討

Experimental study on rotating characteristics of Bi-based HTS induction/synchronous motor under refrigerant gas cooling

<u>中村</u>武恒,西野 竜平,黒田 健太郎 (京大); 今川 信作 (核融合研) <u>NAKAMURA Taketsune</u>, NISHINO Ryohei, KURODA Kentaro (Kyoto Univ.); IMAGAWA Shinsaku (NIFS) E-mail: nakamura.taketsune.2a@kyoto-u.ac.jp

#### 1. はじめに

我々は、温度可変駆動型の高温超伝導誘導同期モータ (High Temperature Superconducting Induction/Synchronous Motor: HTS-ISM)に関する研究開発を推進している。即ち、 運転温度が変化する条件においても駆動可能なHTS-ISMの 研究を行っている。また、上記モータを極低温液体循環移送 ポンプに適用する検討を実施している[1]。上記研究を推進す るためには、温度可変条件下における回転試験システムの開 発が不可欠である。本講演では、まず5 kW 級 HTS-ISM を設 計・試作した。また、同モータを冷却するクライオスタットに GM 冷凍機を設置して、ガス冷却時回転試験に成功したので報 告する。

#### 2.5 kW 級機の試作と試験方法

本研究では、ビスマス系高温超伝導テープ材を使用して5 kW級回転子の設計・試作を実施した。同回転子と銅固定子 (3相4極)を組み合わせ(Fig. 1),かつ鉛直上向きに設置して、 上部のパウダーブレーキによって負荷を印加した。Fig. 2(a) には、回転試験用ホルダーに設置した試作機の外観様子を 示す。また、Fig. 2(b)にはクライオスタットの外観写真を示すが、 トップフランジにGM冷凍機を設置し、当該コールドヘッドと試 作機ケーシングを伝導冷却する構造を開発し、さらにはガス 封入冷却条件下で回転試験を実施できるようにした。

#### 3. 結果と考察

Fig. 3には,温度116 K (HTS回転子:常伝導状態)と73 K (HTS回転子:超伝導状態)における無負荷急加速試験結果の一例を示す(窒素ガスを封入・冷却して実施)。同図に示すように,116 Kでは加速指令に対して遅れが発生しているが,73 Kでは速やかに加速追従しており,これは非線形磁束フロー抵抗に伴う特性と推測できる。実験系の冷却構造や,あるいは定常回転特性など,詳細は講演当日に報告する。

#### 謝辞

本研究は、科学研究費補助金(基盤研究(B), 26289076)な らびに核融合科学研究所・一般共同研究の一環として実施さ れた。

#### 参考文献

 T. Nakamura, et al.: Abstracts of CSSJ Conference, vol. 92, 3A-a11 (2015).



Fig. 1 Photograph of fabricated 5 kW class HTS-ISM





(a) Fabricated motor

(b) Cryostat

Fig. 2 Photographs of test system





Fig. 3 Typical results of no-load acceleration test (Nitrogen gas is sealed and cooled by the use of a GM cryocooler)

## ガスの熱伝導・対流・熱伝達を利用した 全超電動回転機の回転子冷却の可能性の検討と熱解析

Feasibility study on rotor cooling of fully superconducting rotating machines using gas heat conduction, convection and heat transfer based on thermal analysis

<u>田中 翔</u>, 寺尾 悠, 大崎 博之 (東大) <u>TANAKA Sho</u>, TERAO Yutaka, OHSAKI Hiroyuki (Univ. of Tokyo) E-mail: tanaka@ohsaki.k.u-tokyo.ac.jp

#### 1. 研究背景と目的

全超電導回転機は航空機用モータや風力発電機等様々 な分野への応用が考えられている。しかし電機子と回転子を 別々に冷却するための冷媒流路を考える必要があり、構造が 複雑化するため、より簡単な冷却構造を考案する必要がある。 本研究では、ガスによる熱伝導や回転で生じる渦による熱伝 達及び、軸方向に流体を循環させた場合の対流による伝熱 促進を利用した回転子冷却の可能性を熱解析により検討する。

#### 2. 冷却機構

本研究では界磁巻線に臨界温度 92 [K]の YBCO 線材、電 機子巻線に臨界温度 39 [K]の MgB2線材を想定する。冷却機 構としては固定子側を冷媒の伝導冷却により 20 [K]に冷却し、 回転子側は固定子との熱伝達によって冷却された固定子--回 転子間のガス流体によって間接的に冷却する。必要であれば なんらかの方法で回転軸方向にガスを流して伝熱促進させ、 回転子の温度を 50 [K]程度に冷却する。

#### 3. 解析方法

Table 1の回転数の異なる二つのモデルに対して二次元軸 対象モデルを作成した(Fig. 1)。境界条件は流体の固定子境 界を 20 [K]、回転子境界には回転二重円筒の熱伝達率を与 えた[1]。回転子の側面から侵入熱があるとして変数として与 え、その他の境界は断熱条件である。FEM解析を行い定常状 態の温度分布を求める。回転子表面の温度が 50 [K]になる侵 入熱(許容侵入熱と呼ぶことにする)を求めて、風損や実際の 侵入熱と比較して冷却可能かを検討する。

#### 4. 解析結果

ガス He を冷媒として用いた場合の流体の圧力と許容侵入 熱、風損の関係を Fig. 2 に示す。高速回転機と同様の SuperGM プロジェクトの研究報告によれば侵入熱が約 40 [W] であるため Fig. 2 (a)より風損を考慮すれば 10<sup>-2</sup>~1 [Pa]の低 圧のガス He を用いれば冷却可能であることが分かる。



Fig. 1: 2D axisymmetric model of the fully superconducting machine

| able   '王 昭 留 呉 田 駅 機 十 フ ルクルト | Table | 1.全招電道回転機モデルの仕 | ·样 |
|--------------------------------|-------|----------------|----|
|--------------------------------|-------|----------------|----|

| Model                  | 1: Low-speed | 2: High-speed |
|------------------------|--------------|---------------|
| Power [MW]             | 10           | 70            |
| Rotational speed [rpm] | 10           | 3600          |
| Air gap [mm]           | 80           | 20            |
| Rotor diameter [m]     | 3            | 0.88          |
| Axial length [m]       | 1.2          | 2.435         |

一方低速回転機の場合風損は小さいがトルクが大きく、侵入熱が概算で約1800[W]と大きくなることが予想されるため許容侵入熱を大きくする必要がある。そこで流体を回転軸方向に流した場合について He の流量を変えて熱解析を行ったところ流量を大きくすると許容侵入熱が大きくなり、冷却におよそ1[kg/s]の流量が必要であることが分かった(Fig. 3)。

#### 5. 結論

本研究によって、風損が大きくなる高速回転機やトルクチュ ーブからの侵入熱が大きくなる低速回転機場合に関しても、 流体の適切な圧力を選んだり強制的な流れを作りだしたりす ることによって冷却可能であることが分かった。モデル設計を 詳細にすることが課題である。また冷媒にガスを用いると軸受 部を冷却してしまうため、冷却部分と軸受部に温度勾配をもた せることが望まれ、構造についても再度考える必要がある。



Fig. 2: Permissible heat invasion and winding loss as a



Fig. 3: Permissible heat invasion as a function of flow rate

#### 参考文献

 M.Fenot, et. al "A review of heat transfer between concentric rotating cylinders with or without axial flow," International Journal of Thermal Sciences 50, 2011.

## 閉磁路型収束着磁法を用いた高温超電導界磁磁石の電磁界解析

## Magnetic Field Analysis of High-Temperature Superconductor Field Pole Using Convergence-Magnetized Method with Closed Magnetic Circuit

都築 啓太, <u>鈴木 悠之介</u>, 及川 大, 安藤 浩哉, 塚本 武彦(豊田高専) Tsuzuki Keita, <u>Suzuki Yunosuke</u>, Oikawa Dai, Ando Hiroya, Tsukamoto Takehiko (National Institute of Technology, Toyota College) E-mail: J1603@toyota.kosen-ac.jp

#### 1. はじめに

現在、米国をはじめ、ドイツ、韓国を含めた各国で超電導 材料を用いた回転機の開発が盛んにおこなわれている[1,2]。 わが国でも高温超電導材料を用いた回転機の開発の動向に ついて様々なグループが報告をしている。我々のグループで は、大型電気推進船舶用のモータにバルク高温超電導体(バ ルク体)を用いることで、高出力小型化を実現する研究を行っ ている。着磁をすることで永久磁石のように使用でき、励磁を 必要としないというバルク体の特徴は、モータを小型化すると いう点において非常に重要な要素となる。

そこで我々のグループでは、静磁場着磁法を応用しバック ヨークにより形成される磁路を効果的に用いた閉磁路型収束 着磁法を考案した。先行研究において、電磁解析を用いた簡 易的な捕捉磁束の再現手法により、提案手法によりモータ機 器内でバルク体に着磁が可能であることを示した[3]。本研究 では、閉磁路型収束着磁法を用いた際のバルク体の捕捉磁 束密度の電磁解析を行い、出力計算を行うことで、高出力小 型化が実現可能な超電導モータの構造設計を実施した結果 について報告する。

#### 2. 閉磁路型収束着磁法

回転機内において着磁を行う手法として、現状ではパルス 着磁法や静磁場着磁法が有力である[4]。しかしながら、パル ス着磁は銅巻線の電機子コイルを活用できるがバルク体と着 磁コイルが瞬間的に大きな力を受けるため、支持具を強固な ものにする必要がある。また超電導コイルの内径側に収束さ れる静磁場着磁は着磁コイルそのものが大きなものとなるた め、機器内に収めることが困難である。

本研究で用いる閉磁路型収束着磁法は電機子コイルとし て巻線した超電導コイルを用いた静磁場着磁法に用いること でコンパクトな構造を実現するものでありラジアルギャップ型 のバルク超電導回転機内に搭載される。

#### 3. 捕捉磁束密度分布

本モータの基本的な構造を Fig.1 に示す。小型船舶用の 推進動力用モータへの適応を目標とし、バックヨーク外形寸 法 300 mm の 4 極同期型モータを出発点として概念設計を行 った。界磁子には Gd 系のバルク超電導体、電機子コイルに は Bi2223 超電導巻線を用いている。

電磁解析ソフトウェア(MagNet7)を用いて、超電導巻線に 励磁電流を流した時のバルク体の捕捉磁場分布を計算した。



Fig.1 Schematic view of HTS motor



Fig.2 Trapped magnetic field distribution of bulk HTS field pole after magnetization at 1mm above the bulk surface

| Table.1 Numerical parameters in HT | S motor model |
|------------------------------------|---------------|
| Output Power [kW]                  | 15            |
| х <u>11</u> о . Г ]                | 50            |

| Inner radius of rotor [mm]       | 70   |
|----------------------------------|------|
| Outer diameter of back iron [mm] | 300  |
| Thickness of back iron [mm]      | 20   |
| Rotation speed [rpm]             | 1800 |
| Output Torque [N•m]              | 80.9 |

#### 4. 捕捉磁束密度および出力解析

Fig.2 に捕捉磁束密度の計算結果として、軸径方向の捕 捉磁束密度分布を示す。捕捉磁束密度のピークは 0.8T とな り、分布として機械角 360 度にわたり、切れ目のない円錐状の 分布を得ることが可能であることがわかる。Table.1 に本モデ ルを用いた出力解析の結果を示す。計算結果より目標出力 15kW、回転数 1800[rpm]と決定した。

#### 5. まとめ

本研究では新たに考案した閉磁路型収束着磁法を用いた 回転機の捕捉磁束密度の解析を行い、バルク超電導体を界 磁として用いたモータの着磁を完了した。今後試作コイルお よびバルク超電導体を用いた実証実験を行い、大型超電導 モータの概念設計を進める計画である。

#### 参考文献

- I.Kalsi and S. Karon: "Status of Superconducting Motors for Ship Propulsion", Marine Engineering Systems, No. 76,(2003)
- Zhen Huang, et al.: "Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor", Physica C: Superconductivity, Vol. 534, Pages 73-81 (2017)
- Y. Suzuki and K. Tsuzuki "Consideration of captured magnetic flux density in cylindrical HTS using finite element method", Tokai-Section Joint Conference on Electrical, Electronics, Information and Related Engineering, Po2-9 (2016)
- Tetsuya Ida, et al.: "Waveform control pulse magnetization for HTS bulk magnet", Journal of Physics: Conference Series, Volume 695, Number 1(2016)

## インフレーション探索を目的とした宇宙マイクロ波背景放射偏光観測のための 超電導磁気軸受開発の概要

## Development of Superconducting magnetic bearing system for a CMB polarization modulator

#### operating at below 10 K

<u>松村知岳</u>, 桜井雄基, 片山伸彦, 菅井肇(東京大学カブリ数物連携宇宙研究機構); 下村俊貴, 寺地祐介, 寺尾悠, 大崎博之(東京大学); 今田大皓, 山本亮, 宇都宮真, 片坐宏一(JAXA/ISAS)

<u>MATSUMURA Tomotake</u>, SAKURAI Yuki, KATAYAMA Nobuhiko, SUGAI Hajime (Kavli IPMU); OHSAKI Hiroyuki, SHIMOMURA Toshiki, TERACHI Yusuke, TERAO Yutaka (Univ. of Tokyo); IMADA Hiroaki, KATAZA Hirokazu,

UTSUNOMIYA Shin, YAMAMOTO Ryo (JAXA/ISAS)

E-mail: tomotake.matsumura@ipmu.jp

#### 1. はじめに

本講演では、宇宙マイクロ波背景放射(Cosmic Microwave Background=CMB) 偏光観測により初期宇宙の物理を探索す るための観測機器開発にて用いる超電導磁気軸受の開発概 要、及び応用超電導分野に関わる挑戦的開発項目について 紹介する。

#### 2. 科学目的

宇宙論という分野は、ビッグバンにて始まったとする標準宇 宙論が近年の理論及び観測により確立されている。しかし、 我々が住む宇宙の構造の起源、宇宙の平坦性、また宇宙の 地平線問題など、標準宇宙論では未解決の観測事実が存在 する。これらを一挙に説明するため、宇宙初期に起きたとされ るインフレーション仮説が提唱されている。この仮説は宇宙が 始まった後10<sup>-38</sup>秒の事象を記述するモデルである。実験的 に検証が不可能に思える物理事象であるが、CMBの偏光観 測により仮説の実験的検証が可能である。さらに CMB 偏光観 測は、インフレーション仮説の検証だけでなく、宇宙の大規模 構造、ニュートリノの質量和などにも CMB 偏光シグナルは感 度を持つ。このための世界的に地上、気球、衛星による観測、 またその準備が進んでいる。

#### 3. 観測機器としての偏光変調機と要求機能

CMB 偏光を観測するために、偏光に感度のある望遠鏡及 び検出器が必要となる。CMB は3 K の黒体放射であることが 知られており、特にインフレーション由来の信号は3 K の黒体 放射に対して nK 程度の揺らぎだと期待される。こうした信号 を受信するための望遠鏡は、望遠鏡自身の熱放射を低減す るため冷却する必要がある。また、検出器はサブケルビンに 冷却された超電導検出器を用いることで高感度を実現する。

CMB 望遠鏡の中で鍵となる観測機器の一つに偏光変調器 がある。これは、微弱な入射偏光信号に変調をかけることで、 検出器の時間的不安定性や系統誤差の低減を実現する。変 調を実現する具体的な方法は、光学素子である半波長板を 望遠鏡の光路内にて連続的に1 Hz 程度で回転させることで 実現できる。

望遠鏡の光路に置くことから半波長板の直径は0.5m程度、 そして望遠鏡の環境温度は10K以下である。結果として、 0.5m程度の半波長板を10K以下で連続回転させることが 求められ、従来の機械式軸受では発熱源となり実現性が低い。

この困難を克服するため、低温での軸受に超電導磁気軸 受を採用した。この軸受は非接触式であることから摩擦が低く、 低温でも連続的な回転が実現できる。こうしたシステムは米国 CMB 偏光観測気球実験 EBEX にて採用され、科学観測にて 搭載された。[1]

#### 4. 開発項目

現在、衛星による CMB 偏光観測を目指し、開発を進めている。開発項目は以下の通りです。

- 超電導磁気軸受
- AC モーター
- 回転角度エンコーダー
- アクチュエータ
- 磁場シールド

これらの開発項目はすべて10K以下の運用温度にて動作す ることを想定する。特に、衛星での採用を想定する場合、衛星 環境での冷凍能力に限りがあり、総発熱を3mW以下を要求 するシステムの検討を行っている。

#### 5. 試作機

上記の要求を実現するために、現在小型試作機を作成し、 運用温度 10 K にて動作試験及び熱的性能評価試験を行っ ている。図1に試作機の概要を示す。



Figure 1 A prototype polarization modulator unit using a superconducting magnetic bearing operating below 10 K. [2]

#### 6. まとめ

本公演では、計画概要、要求及び試作機試験の現状を紹 介する。特に、超電導磁気軸受の運用温度10 K以下でのエ ネルギーロス及びばね定数推定に基づき、実機サイズでの性 能について外挿し議論を行う。

#### 参考文献

- J. Klein, et al.: A Cryogenic Half-Wave Plate Polarimeter Using a Superconducting Magnetic Bearing, Cryogenic Optical Systems and Instruments XIII, edited by James B. Heaney, E. Todd Kvamme, Proc. of SPIE Vol. 8150, 815004 · 2011 SPIE.
- T. Matsumura, et al.: Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing, IEEE Transactions on applied superconductivity, Vol. 26, NO. 3, April 2016.

— 45 —